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In the VLSI microelectronics era, the cost of the immense CPU

time and memory storage for a "standard' circuit simulator has become

prohibitive. In order to achieve dramatic improvement in the perfor-

mance of the circuit simulator, there are two principal points of

departure from the "standardr' simulation approach, namely, 'tearing"

decomposition and 'relaxatioze' decomposition.
1

This research is to study the numerical convergence and stabil-

ity properties of several of the relaxation algorithms that have been

proposed for the simulation of VLSI circuits. The time-point Gauss-

Seidel method with prediction, the exploitation of latency and event

scheduling algorithms are implemented into a general purpose circuit

simulator SLATE-R (a Simulator with Latency and Tearing -Relaxed

version). The performance of the SLAT1-R program in the analysis of

various types of integrated circuit technologies Is studied.

Compared with the conventional techniques, the tearing decomposi-
tion is Just some special reordering strategy, therefore, it shares
the same numerical properties with the conventional techniques. How-
ever, the relaxation decomposition processes one subeircuit at a time
and relaxes all other suboircuits, therefore, it is characterized by
completely different numerical properties.
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INTRODUCTION

Circuit simulation has become a significant tool in the design

of integrated circuits. 'Standart' circuit simulators, such as

SPIC2 [11 and ASTAP [21, substantially include the following four

algorithmic techniques

~ -o.,

1 1) Stiffly stable implicit integration methods, such as the

backward Euler or Trapezoidal formulas, which replace the original

system of nonlinear differential-algebraic equations, describing the

behavior of the circuit, into a system of nonlinear algebraic equa-

tions.

2) Automatic control of the tine step h by using approxima-

tion differentiation to estimate the local truncation error so as to

ensure accuracy of the solution.

3) The quadratically convergent Newton-Raphson method to

solve the system of the nonlinear algebraic equations by iteratively

solving a sequence of linear equations.

4) Sparse Gaussian elimination methods to solve the linear

algebraic equations in each Newton-Raphson iteration.

I Ma6L x



2

Because of the good nmerical stability and accuracy properties

of the implicit integration methods, these circuit simulators can

handle a wide variety of ordinary differential equations very well.

Also with the variable time step size control technique, these

methods have a simulation speed advantage in stiff systems (widely

separated egenvalues), because one can vary the integration step

size according to the rate of change of the response and not

encounter numerical stability problems. For nonlinear equations,

Newton-Raphson iteration can be used to achieve convergence over a

wide range of integration step sizes. Finally, modified nodal

methods are used to formulate the circuit equations because they are

efficient and result in sparse arrays. Thus, in order to minimize the

number of nuserical operations, these equations are solved by means

of sparse matrix techniques.

Although these circuit simulators are very efficient, their

memory and CPU requirements typically limit their use to a few hun-

dred transistors. However, with the rapid growth in the scale, meas-

ured in device count, of integrated circuits being designed in the

VLSI microelectronics era, the cost of the immense CPU time and

memory storage for 1%tandardF1 circuit simulators has become prohibi-

tive. In order to achieve even faster circuit simulation with less

memory requirements, one must take advantage of some of the special

features of these circuits, such as (a) the repetitiveness of the

circuit (many gates are of the same type), (b) the different levels

of activity of the various gates in a given time interval, and (a)

-- ~ 3
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the almost one-way propagation of the signal in many gates. Hence a

series of now generation methods of circuit simulation, such as NI0TIS

[3], IDTIS-C [4]. DIANA [5), SPLICE [61 and MACRO [71 have been

developed. These new simulators, in their quest for speed, elia-

inated one or more of the principal features of the "standard" simu- 4.

lator in order to make a favorable trade-off between cost (i.e., the

CPU time and memory storage) and resolution (i.e., the attainable

level of detail). The program SATE (8] takes advantage of items (a)

and (b) above by using node tearing to partition the circuit into

subeircuits so that the sparse matrix pointers only have to be gen-

erated and stored for each different type of Sate and not for all

gates. Secondly, gates that are latent in a given time interval can

be bypassed in the solution of the circuit in that time interval.

These improvements have resulted in approximately a factor of two

improvement in both memory and CPU requirements.

However, in order to achieve more drmatic improvement in the

performance of the circuit simulator, one must take advantage of the

one-way propagation of the signal in most gates, that is, the

response of a Sate has little effect on its input signals, or in

other words, there is little feedback to the input nodes. When this

feedback coupling is sufficiently weak, one can relax certain vari-

ables in order to decouple the gates.

There are two principal points of departure from the "standard"'

simulation approach which may be taken at any of the three main lev-

els of circuit simulation (i.e., the time level, nonlinear equation

.~ z
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level and the linear equation level), namely. "tearing' decomposition

and '"tmporal" decomposition. As to these two techniques, the former

aims to retain the convergence and stability properties of the 'stan-

dardr method, while the latter is related to the so-called "relaxa-

tion" or 'ndirect" method [9.101, and is characterized by completely

different convergence and stability properties.

Ever since the development of the IDTIS program in 1975. the

first relaxation-based nonlinear time-domain transient circuit simu-

lator, there have been a series of relaxation-based simulators

developed. However, some of these simulators suffer from serious

numerical properties. In the era of VLSI circuits, the relaxation-

based techniques seem to be an inevitable tendency [111 in order to

achieve the speed necessary to analyze large circuits. Thus, a com-

plete, deterministic study of the numerical stability and convergence

properties of relaxation methods is a valuable and interesting

research topic.

This research is concerned with the investigation of the numer-

ical stability and convergence properties of the two commonly used

relaxation methods, waveform and time-point (Gauss-Seidel), as a

function of the degree of coupling. The modified waveform relaxation

method for the simulation of VLSI circuits in the time domain is stu-

died. This approach is similar to the waveform relaxation method in

RELAX [91. However, the entire time interval is separated into small

time windows. Instead of a sweeping iteration in the entire time

interval C 0, T 1, the sweep iteration is processed sequentially in

.4,



each window and the waveforms are concatenated. The experimental

results (12] show that the modified technique can get better resolu-

tion with reduced cost, thus permitting larger systems to be siinu--

lated.

In the transient analysis of lIDS circuits in which the floating

gate to drain capacitance is modeled. the pole-splitting phenomenon

(13] occurs when the transistors are active. The stiffness of the

system is determined by the degree to which the poles split. In this

research, the numerical properties of the waveform relaxation methodr

are studied for the analysis of linear stiff systems. We exaimine the

numerical properties by means of the test circuit which was generated

by linearizing the model of a cascade of two inverters in which the

transistors are assumed to be active. When the window size is shrunk

to the time step size, the waveform relaxation method is equivalent

to a time-point relaxation method. The time-point relaxation method

considered in this research is the modified Gauss-Seidel method [91,

which uses a forward predictor for the unsolved variables. It has

been demonstrated to be an efficient technique in the timing analysis

of lIDS circuits. The numerical properties of the modified Gauss-

Seidel method are also observed for linear stiff systems.

The SLATE program is modified to implement the relaxation tech-

niques in this research. Chapter 2 describes briefly the different

relaxation techniques used in electrical simulation. In Chapter 3 the

modified Gauss-Seidel technique and its numerical properties for the

analysis of a linear stiff system are discussed. An introduction of
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the waveform relaxation method (WIN) and the modified window waveform

relaxation method and its numerical properties are discussed in

Chapter 4. The experimental results of the program SLATE-R (a Simu-

lator with Latency and Tearing - Relaxed version) are shown in

Chapter S. Chapter 6 describes the implementations of the SLATE-R

program. Finally, the conclusions are in Chapter 7.



MIEl OF SIMULATION 7IEWNQUES

Standard circuit simulators have proven to be reliable and

effective when the size of the circuit is limited to several hundred

transistors. As the size of the circuit increases, the primary

memory storage and CPU time used by these simulators increase rapidly

[14] despite the use of sparse matrix techniques. In order to simu-

late LSI and VLSI circuits, a number of techniques have been used to

improve the performance of the standard circuit simulators. Basi-

cally, these nonstandard simulators can be meaningfully classified by

the decomposition techniques.

Decomposition refers to the technique that subdivides the whole

set of the system equations into several subsets. Decomposition can

be taken at any of the three main levels of circuit simulation (i.e.,

the time level, nonlinear equation level and linear equation level).

Actually, the system of equations, no matter at what level it is, is

processed by a decomposition technique as a composition of several

systems with interactions between them. Once the system is decomposed

into subsystems, the technique of solving each subsystem is identical

to the conventional numerical approaches.

In this chapter, we will briefly review the analysis techniques

used In conventional circuit simulation. Then we will describe the

basic concepts and properties of two systematic approaches to
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accomplish system decomposition.

2. jtandad Circuit SiaMlators

The nonlinear algebraic-differential equations which describe

the performance of the integrated circuits are generally of the fol-

lowing form :

f(x(t) ,x(t) ,u)O (2.1)

Elx(0)-xo0)=0 (2.2)

where z a RP is the unknown variable at time t with the given ini-

tial value o x is the time derivative of z at time t; us i is

the vector of all the inputs and possibly their time derivatives;

f : RP x RP z Rr -- RP is a continuous function; and s2 . , n p

is a matrix of rank n such that E(x(t)) is the state of the system at

time t. Let ( ti ; i O1,...,N ) denote a sequence of increasing

time points selected by the simulator with to M 0 and tNT,where T

is the given simulation time interval.

By using an implicit integration method, the system of equa-

tions (2.1) is transformed into a discrete time sequence of nonlinear

algebraic equations. At each time point tip the corresponding alge-

braic equation can be written as

g(xi)=O (2.3)

z~i,



where xi denotes the computed value of x(tt).

The solution of (2.3) is obtained by applying the Newton-

Raphson method. At each iteration in the Newton-Raphson method, the

resulting linearized equations are of the form:

A x -b (2.4)A

The Newton-Raphson iteration is carried out until the conver-

gence is achieved or the iteration limit is exceeded. At each itera-

tion count, the function and Jacobian matrix evaluations are neces-

toary construct the coefficient matrix A in Equation (2.4). Because

in the circuit simulation environment, the matrix A is usually very

sparse; hence, the Gaussian elimination method is implemented by

using a sparse matrix technique to reduce the computational opera-

tions.

a e It is very important to exploit the sparse technique, since the

computational complexity of the Gaussian elimination method applied

to an n-n full matrix is proportional to n while the computational

complexity of the Gaussian elimination method with sparse techniques

in on the average lJ proportional to a0 •a a (1.2, 1.5]. Figure 2.1

shows the hierarchical organization of conventional numerical methods

for time domain simulation.

As the size of the circuit increases beyond several hundred

transistors, sparse techniques alone are not enough to provide simu-

lation results in a reasonable time. In the next section we will
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Systemn of Nonlinear
Differential Equations

Inrmna ie opIpii Numerical
Ci~tgrtlonFormula

System of Nonlinear
Algebraic Equations I

NR Iteration Lop Newton-Raphson
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FP-632S

Fig. 2.1 Hierachicul Organization of Conventional
Circuit Simulation.
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describe the features of system decomposition, which have led to the

development of several new generations of circuit simulators.

2.Syste Deconosition

The new generation of circuit simulators for large digital cir-

cuits uses two principles, namely the "tearing"l decomposition and the

'ielaxatios' decomposition [15J. Compared with the conventional

techniques, the tearing approach is just some special reordering

strategy. Therefore, the computational operations of the tearing

approach depends mainly on the structure of the system. If the system

structure is not sparse or when the block structure of the system can

not be exploited, this approach does not offer any benefit over con-

ventional techniques. In other words, the tearing method will be

powerful only if it is combined with some other strategies such as

the exploitation of latency and the exploitation of the repetitive-

ness of a limited number of subcircuits.

In contrast, the techniques classified as relaxation methods are

characterized by completely different convergence and stability pro-

perties. We will discuss the numerical properties of the relaxation

techniques in detail in Chapter 3 and Chapter 4.

These two different approaches to decomposition techniques will

be described in more detail in the next sections.
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Z.ITearing hsiamiioa

The idea of tearing decomposition techniques is to select a set

of tearing variables to separate the entire system into several sub-

systems. There are two different approaches to tearing decomposition,
nanely, branch tearing and node tearing. The former uses tearing

branches as the tearing variables (Figure 2.2) while the latter uses

tearing nodes as the tearing variables (Figure 2.3). The entire sys-

tem is torn apart into several subsystems by removing these tearing

variables.

Algebraically, the branch tearing method is equivalent to a spe-

cial reordering of the hybrid analysis equations, whereas the node

tearing method is equivalent to a special reordering of nodal

* analysis equations. However, both methods result in a Bordered Block

Diagonal (BED) matrix structure (Figure 2 .4a). Each block

corresponds to a subsystem, and the border corresponds to the inter-

connections. The more general matrix form that is suitable for tear-

ing decomposition is the Border Block Lover Triangular (BELT) struc-

ture (Figure 2.4b).

Tearing decomposition of linear algebraic equations can be

implemented through the Block LU Factorization (161. Let us consider

the system of equations shown in Figure 2.5, i.e.,

A x -b

where x I v w IT 6 R n is the vector of the unknown variables and w

is tevector of the tearing variables. The solution strategy has i-



43 
13

the . 2.2or Ezal faNewr 9ttondit h

Suabnetworks by the Branch Tearing Method.

AI %x



14

Subnetwork 1 n.1 Subnetwork 2(=1, ) " (a2, 02) ,.

The Rest of,
th Network

Subnetwork 3 qx

Fig. 2.,3 Example of & Network Partitioned into Th~ree
Subnetworks by the Node Tearing Method.
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Fig. 2.4b Bordered Block Lower Triangular (BBLT) Form
of a Matrix.
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been to first eliminate the variables v from the system of equations

to obtain the following reduced subsystem from which the value of the

tearing variable w is achieved.

(E-D- 1 C )w b -Dg1-bW v

where the corresponding meanings of the matrices and vectors are

given in FiSure 2.5. The computed solution of w is then used to com-

puts the solution of v blockwise. Some other techniques, such as the

Tearing Algorithm [161, can also be used in implementing tearing

decomposition. However, the Tearing Algorithm is just some particu-
.4%

lar form of the Block LU Factorization [17]. The details of this

approach are given in (161.

A series of new circuit simulators, such as LAT [81 and SAMSON

[18], implement tearing decomposition techniques in the solution of

the linear algebraic equations and give reasonable improvement.

Actually, SAMSON is a mixed mode simulator that also implements a

block relaxation technique for solving the nonlinear algebraic equa-

tions. We will discuss the relaxation technique later in this

chapter.

Multilevel Newton-Raphson techniques [7] can also be used in

solving a system of nonlinear algebraic equations decomposed by means

of the tearing method. Here we just describe this procedure briefly.

The solution strategy has been to estimate the tearing variables

(e.g., current or voltage) at each tearing port and to excite the

.

LW'
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is

torn subsystems with independent sources at these ports. The remain-

Lag port responses are computed and are substituted into the inter-

connection equations. If these equations are not satisfied, another

guess is made of the variables chosen as port excitations. This

iterative procedure continues until convergence is achieved. MACRO

[7J is an example of the simulator that implements the multilevel

Newton-Raphson method for solving the nonlinear algebraic equations.

2.4 Relaation Decomposition

In the tearing decomposition approach, the original system of

equations may be sparse while the reduced interconnection matrix may

not. Therefore, the computational advantage of the tearing decomposi-

tion technique over the conventional circuit simulator depends cru-

- cially on how small each decomposed subsystem and the reduced inter-

connection matrix are.

However, in the relaxation decomposition approach, the system of

equations is simply partitioned into several subsystems. There is no

restriction on the block structure of the system. Within each sub-

system, the variables to be solved for are defined as internal vari-

ables and the other variables are defined as external variables.

The solution strategy of the relaxation decomposition approach

is to solve each subsystem individually, and iterate through all the

'subsystems until the convergence is achieved. In order to solve a

subsystem for its internal variables, the subsystem has to be decou-

pled by replacing the values of its external variables. Usually, it

"!nLW ,. ."-



I takes a number of iterations, repeatedly solving each of the decou-

pled subsystems, so that the values of the external variables of each

subsystem can be updated.

There are two well-known types of relaxation techniques, namely

the Gauss-Yacobi (GY) relaxation (3] and the Gauss-Seidel (GS) relax-

A. ation [4]. These approaches as well as the Gauss-Seidel predictor

ITR technique [101 will be discussed in detail in Chapter 3. Figure 2.6

shows the use of the relaxation technique at various levels of the

system of equations. The relaxation approach applied at the system

level of the nonlinear differential equations such as RELAX (9] is

the so-called waveform relaxation method which will be discussed in

Chapter 4. The relaxation approach applied at the system of algebraic

equations such as NDTIS [3], NOTIS-C [4], ,SPLICE [6] and PREMOS [10]

is the time-point relaxation method which will be discussed in

Chapter 3.

2.5 Concluding Remarks

We have reviewed various decomposition techniques that have

been proposed and implemented. The relaxation approach has the poten-

tial of achieving the speeds necessary for the next new generation of

circuit simulators [11]. However, the relaxation approach does not

guarantee that the sequence of the iterated solutions will converge

to the exact solution unless the convergence condition on the parti-

tioned system is satisfied.

, ,x., ,-,-,;. , -.;-, ..;.'.....---...-.,-,'-.;,. -.',-.-.-......................................................•.-................-.,-,-...Z~i';Z. !/
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The study of the relaxation technique at different levels of the

system of equations is still open. 7Ue investigation of the numerical

convergence and stability properties of the relaxation techniques is

the main theme in this research.

JA J%
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CHAPTER 3

THE MODIFIED GAUSS-SEIDEL M EIOD AND ITS NUMERICAL PROPERTIES

In the simulation of integrated circuits . relaxation tech-

niques were proposed for the solution of simultaneous algebraic equa-

tions in order to speed up the simulator so that larger circuits

could be handled. These methods are iterative and convergence depends

on the coupling among the variables. Since many digital NOS circuits

have rather weak coupling from output nodes to input nodes because

the input is the high impedance Sate, these methods should perform

well on digital NOS circuits. This reasoning led to the development

of the NOTIS program [31, a landmark for the CAD area. Following the

JOTIS simulator, a series of the NOTIS-type simulators., ch as

MOTIS-C [4]. SPLICE [61 and PRENDS [10] were developed. The -elax -

tion techniques used in these simulators decompose the system at the

level of the difference equation.

In this chapter, we describe the time-point relaxation tech-

niques, such as Gauss-lacobi relaxation and Gauss-Seidel relaxation.

together with a study of their convergence and stability properties.

This study reveals why time-point relaxation methods work well on

some special classes of circuits, but perform very poorly on other

types of circuits.

, L%
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mathematical Formlation

The systems of the nonlinear differential-algebraic equations

which describe the performance of the integrated circuits are son

orally of the following form

f(x(t),x(t),u).O (3.1)

E(z(O)-xo0)= 0  (3.2)

where x a Rp  is the uknown variables at time t with the given

initial value xo; x is the time derivative of x at time t; u 6 Rr is

the vector of all the inputs and their time derivatives;

f : Rp x RP x Rr -- RP is a continuous function; and E a R xp , n I p

is a matrix of rank n such that E(x(t)) is the state of the system at

time t. Let ( ti ; i - O,1,...,N I denote a sequence of increasing

time points selected by the simulator with to M 0 and tN - T where T

is the given simulation time interval.

At every time point tn, Equation (3.1) can be approximated by

using an implicit integral formula, such as the backward Euler for-

mula, to generate a set of nonlinear algebraic equations of the fol-

lowing form:

g(,n) _ 0 (3.3)

In a standard circuit simulator, Equation (3.3) is solved by

using the modified Newton's method which may take a number of
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iterations to reach the solution. At each iteration, a series of

algorithmic procedures, such as function and Jacobian evaluations. LU

factorization and sparse matrix solution techniques, are repeated.

The linearized equations at each iteration in the Newton's method are

of the form:

A x -b (3.4)

3..1. Gauss-Jacobi Relaxation Method

To fit the fast growth of VLSI systems, a series of new genera-

tion simulators have been proposed which depart radically from the

standard algorithmic techniques. One of the principal points of

departure from the standard simulation approach is relaxation decom-

position. There are two common types of time-point relaxation tech-

niques used in the now generation simulators, namely the Gauss-Jacobi

relaxation, e.g., in the N)TIS program (3], and the Gauss-Seidel

relaxation, e.g., in the MDTIS-C program [4].

In MNTIS, the components of xn in Equation (3.3) are obtained

one at a time by solving a sequence of scalar equations, i.e., at

time n+l, the k-th component of x x x , is obtained by solving

the following scalar equation:

£kn. n. ... n 1k n ... ) 0 (3.5)

k(a 1-2 k-.....k
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In the solution sequence, for each scalar equation, the previ-

ous values are used for all the 'exogenous' variables. This process

yields an approximation to the solution which can be substituted into

Equation (3.3) to determine if the values satisfy the equation. If

not, the process is repeated and hopefully the iterates converge
-i.

rapidly to the solution.

1.1-4 ._qR-Seidel Relaxation Metho

IOTIS-C used the Gauss-Seidel algorithm to achieve a better

result than that of EDTIS. The Gauss-Seidel relaxation method is

quite similar to the Gauss-Jacobi method, but recently updated values

F_. of the solved variable are retained. The solution sequence is to

solve the following equation for x + 1
k

,+1 3+1 n+1 k -
Sk(x 1  'k-l' x1 x n ) = 0 (3.6)

The process is repeated until the sequence converges to the

solution or the number of iterations becomes excessive. If each sub-

system has only one internal variable, i.e., the x's in Equation

(3.5) and Equation (3.6) are scalar, the relaxation approaches are N

said to be done pointwise, that is, point Gauss-Jacobi relaxation

method and point Gauss-Seidel relaxation. Otherwise, it is said to be

blockwise. From the network point of view, the pointwise relaxation

methods are equivalent to decomposing the network at each node,

whereas the blockwise relaxation methods decompose the network into

subnetworks which may consist of more than one node.

\ - ' 'i
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In the Gauss-Seidel method, because the previous values are

used for those unsolved variables, it has been found that usually the

sequence converges much more rapidly to the solution. Originally

NOTIS and NOTIS-C were programmed to only do the first iteration and

to control the time step to achieve accuracy. For large-scale cir-

cuit analysis, this one-sweep approach was used to save additional

computational steps. In order to achieve less error and better con-

S vergence for the unsolved variables, PRENOS (10] used a one-sweep

Gauss-Seidel technique with prediction and Sot reasonable improvement

in the transient analysis of NDS circuits. This technique is

described below.

3.1.3 Modified Gauss-Seidel Relatio Method

The solution strategy of the modified Gauss-Seidel method has

been to use a forward first-order linear predictor for the unsolved

variables. That is, at the i-th scalar equation, to solve for zis

the values for the unsolved variables zj's, j > I are predicted

according to the following formula:

" xn+l . n + hn('; (3.7)

'J.uess z nhI

Experience has shown that of the above time-point relazation

methods, the Gauss-Seidel method with prediction, used in the program

PRENOS, usually performs the best for h small enough. However, the

fact that all three methods take only one sweep has proven to cause

Sig=u
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accuracy problems in some circuits. Thus more recent versions of

NDTIS (19] and SPLICI [20] iterate until the sequence converges to a

solution. If the number of iterations becomes excessive, the time

step is reduced to improve convergence. However, this approach can

become computationally inefficient under certain conditions. To

understand why, the convergence and stability properties of these

time-point relaxation methods are analyzed in the next section.

The Converence I" Stabilit Proverties

In order to study the stability properties of numerical

integration methods, a simple first-order differential equation of

the form

x = a x (3.8)

is chosen by numerical analysts as a test vehicle. Similarly, in

order to study the numerical properties of relaxation methods used to

decouple a system of differential equations describing the behavior

of digital circuits, the simple linear test circuit in Figure 3.1 was

chosen (211. This test circuit was generated by linearizing the model

of a cascade of two inverters in which the transistors are assumed to

be active. The elements is, S, and C1 represent the Norton equivalent -

circuit at the output of the first inverter, and the capacitor C

represents the coupling (feedback) from the output node of the second

inverter to its input node #1. The elements C1 , C2 , g1 and g2 are all

scaled to 1, and gm and Cc are adjustable.

a 0
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The test circuit has two natural frequencies on the negative W

real axis, and their ratio (degree of stiffness) can be increased by

Increasing C c or gn as shown in Table 3.1.

Table 3,
Effect of C and on the tine constants of the test circuit

case Co( SU(S) T1 -1A .(s) C2-/)'2(s) x 2, A

1 0.01 1 1.1 0.92 1.22

2 0.10 1 1.5 0.80 1.88

3 1.00 1 4.3 0.70 6.17

4 0.01 10 1.4 0.74 1.87

5 0.10 10 2.8 0.43 6.37

6 1.00 10 13.8 0.22 63.30

7 0.01 100 '.6 0.39 6.80

8 0.10 100 12.1 0.099 122.00

9 1.00 100 104.0 0.029 3597.00

10 0.01 1000 11.9 0.085 140.00

11 0.10 1000 102.0 0.012 8696.00

12 1.00 1000 1004.0 0.0030 335570.00

mj •

:'. i ;, "' ,' .-'-o' .",.'- "- ". ..' ' % = % , -', % ". . ' "- "=' . % - % % ;° % % - .' ," , ' . " ' _% -' -"
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The transient solution to this test circuit is of the form

v2 (t) - k t/e +k _t/ 2  (3.9)

Tedominant natural frequency is X.i, and it determines how

slowly the transient response decays. One can estimate the dominant

natural frequency using the Miller effect approximation. In the next

section. we examine the Gauss-Seidel relaxation method and determine

the relation between the stiffness of the test circuit and the time

step h needed in order to achieve good convergence to the solution.

1424 Couvegnso! Ai Iii 11a-PriaZ 9kagjrkj Iteratio Method

The numerical solution is begun in the usual way, t)it is. the

differential-algebraic Equations (3.1) are converted to a set of

algebraic Equations (3.3o by means of an implicit integration for-

mule. The equivalent circuit resulting from this transformation is

obtained by replacing the energy storage elements with their ooupan-

ion models. For instance, the node equation of the test circuit of

Figure 3.1 can be expressed in the following form:

CI aC -cc v 0 vi ~w
+ -0 (3.10)[C C +C1 jv] [ 21[]

L
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Fig. 3.1 Test Circuit.
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By using the backward Euler formula as follows:

X n 
(3.11)

where h is the size of the time step, the equivalent circuit is asn

shown in Figure 3.2. The equations for this circuit are

"Ci+Cc+hni -C V
hn -Co + ha' ns+ Ln

+ h~g~hng2 +C2 +Cc] [v2nl
K (3.12)

1 [c1+c -c Vl,n-1 Fi5(tui

2

Note that if C = 0, the two nodes are decoupled. Thus we can

solve for vI  first (the output of the first gate), and then we can

solve for v2 (the output of the second gate) without inverting the

circuit matrix. In special purpose circuit simulators for large

digital circuits, this is essentially what is done, except on a much

larger scale.

If C f 0, the equations (Sates) can be decoupled by relaxing

certain nodes by means of the Gauss-Seidel method. For instance, for

the test circuit, we express Equation (3.12) in the form

%--
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L + D u + 1(3.13)
(~ ~ L+ ).- n yn + B v 1  -s

where

: L + D 1 ,...n
h+= 1 C+chl (3.14)
n L-Cc + hng hng2+C2+Cc

and

rn
U = (3.15)

0C/0

The Gauas-Seidel method of solution for Equation (3.13) is the itera--

ti on

V(k) - -(L+D)- 1 U-(k-l) + By + j (3.16)
-n -n -n-i -3

where

v() (3.17)
n v n-(

and

-(L+D)- 1 U c 0 &2 hn+C2 +Cc (3.18)

C +C +gh )(C2+Cc+ 2 h) 0 CC-&h

No matrix inversion is required, since L+D is triangular. A suf- . .

ficient condition for these iterates to converge to the solution is

V~~~~'- A4~ "-,A,.* - .
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given by the following inequality:

lI(L+D)-lUI I < 1 (3.19)

The above norm is a function of the step size hn. Using the 1.

norm, we found the upper bound on the step size hn for the range of

parameter values in Table 3.1 such that Equation (3.19) is satisfied.

This upper bound, h , is given in Table 3.2.

Table 2
Upser bounds on the time stey with the Gauss-Se1del methods

case Co (F) gm(S) TI T2 hm hunstable

1 0.01 1 1.1 0.92

2 0.10 1 1.5 0.80 C

3 1.00 1 4.3 0.70

4 0.01 10 1.4 0.74

5 0.10 10 2.8 0.43 e C

6 1.00 10 13.8 0.22 1.0 2.0

7 0.01 100 2.6 0.39 , 0

8 0.10 100 12.1 0.099 0.16 0.32

9 1.00 100 104.0 0.029 0.052 0.104

10 0.01 1000 11.9 0.085 0.14 0.26r.t
11 0.10 1000 102.0 0.012 0.012 0.025
12 1.00 1000 1004.0 0.0030 0.0050 0.010

*Criterion satisfied for all h > 0

. .. .. . .. .--
-
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The tem hunstable is the step size at which the solution

becomes unstable in the modified Gauss-Seidel method which will be

discussed in the next section.

From Table 3.2 we found that in order to satisfy inequality

(3.19) the step size h has to be approximately less than or equal to

the size of the mallest time constant in the system. For example.

for Cc - 0.1 F and 5m - 100 S. then h ( 0.16 s is sufficient for con-

vergence. If S. is increased to 1000 S, then h ( 0.013 a is suffi-

cient for convergence. Our numerical experiments for this circuit

concur with the above observations. For instance, for Ca = 0.1 F and

8m =100 S, if h - 0.1 s the iterative solution sequences converged,

but they did not converge for h - 0.2 s.

1.2 Numerical Stabilty 21 the Qu-sweeunu-Sa idS- Iteration

ethod with Predictij

In our test circuit we used the following predictor

v(0)  =2= (3.20)r

- v2, +h 2n-1 - n-2 (3.20)In l~-i aha-1

in order to initialize Equation (3.16). If k - 1 in Equation (3.16),

then upon substitution of Equation (3.20) into Equation (3.16) we

obtain the difference equation:

k.! .-4 .. .-
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rC +C 0 + hn1  
( - +Cg -C h

(-C) + uhn  h n$2 +C2 +C] in Cc -(C 2 +C) -0 .-1

h n [ (3.21)
I ] ,hn. 1  .1 0

Applying the Z-transform yields the following characteristic

polynomial:

Pz3 + Q2 + Rz +S - 0 (3.22)

where for h hn_ .h

P - (gLh + C1 + Cc)(8 2 h + C2 + C)

Q -(C2 + C)(C 1 + C0 +51h) - (C1 + C)(C2 + C0 + $2 h)

+ c ( uh - c 0)

R = (C + C )(C2 + C)+ (Cub)
1 0 2 0 4c-g)

S._-C2

-c

The term hunstable represents the time step at which Equation
.4

(3.22) has a root on the unit circle. For out test circuit the values

of hunstable are given in Table 3.2. If the tine step becomes greater

than hunstable the integration becomes numerically unstable.

.1
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Furthermore, the root loci in Figure 3.3 ad Figure 3.4 give

more details about the stability of the modified Gauss-Seidel method

for the stiff case. The roots of the characteristic equation (3.22)

are a function of h. In order for the modified Gauss-Seidel method to

be numerically stable, the roots of Equation (3.22) must lie inside

the unit circle. For ha. small enough, this is the case. However, we

gfound from the root locus that if h ais much larger than the smallest
time constant in the circuit (approximately a factor of two), these

roots lie outside the unit circle. For example, the root locus of the

case when C =0.1 F and go 1000 S is shown in Figure 3.3. Note

that for h ) 0.025 s one of the roots lies outside the unit circle.

From Table 3.1 this is approximately 2v:2. Thus. in this case we are

constrained by the numerical stability properties of the algorithm to

keep the step size in the neighborhood of the smallest time constant

over the entire time interval.

Table 3.3 demonstrates the constraint condition of the modified

Gauss-Seidel algorithm. The analysis time interval in Table 3.3 is

3c where v, is the larger time constant of the system in each case,

such that the system can reach the steady state during the analysis

time interval. With the local truncation error 0.001, the number of

the time points needed for each case is counted in Table 3.3 to see

the effect of the system stiffness on the time step. It is found

that the modified Gauss-Seidel method takes many time points for the

stiff systems. For example, in case 9 with C0 1l.0 F and g5W100 S. v,

-104.0 a, It takes 2650 time points in 3:,; the average time step in L
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this case is 0.117 a which is about four times the mallest time con-

stant T2 (=0.029 s). while for the standard circuit simulation tech-

nique it takes only 20 time points with the average time step 15.6 s.

Another instance is in case 11 with C=0.1 F and gmlOOO S, I 

102.0 a. and it takes 8122 time points in 3v,. the average time step

in this case is 0.037 s which is about three times the mallest time

constant C2 (-0.012 s), while for standard circuit simulation it

takes only 44 time points with the average time step 6.96 a.

The number of time points for variable time ste (LTB= .001)

case x2/1 modified Gauss-Seidel standard method

1 1.22 5 6

2 1.88 6 6

3 6.17 8 7

4 1.87 6 7

5 6.37 9 9

6 63.30 7 6

7 6.80 17 17

8 122.00 91 19
N.

9 3597.00 2650 20

10 140.00 231 45

11 8689.00 8122 44

12 335570.00 90048 45
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However, for those nostiff systems such as cases 1 to 7, both

the modified Gauss-Seidel method and the standard circuit simulation

technique take the same nuaber of time points. It is clear from

Table 3.3 that, for stiff systems, the time steps have to be con-

strained to the order of the mallest time constants of the system to

keep the solutions numerically stable.

1.1. Couing Remarks

In the above tables, the parameters C1 - 1, C2  1 1, 1l = 1 and

1 1, the floating capacitor Cc and the transconductance gm are

varied to change the stiffness of the system. If Cc M 0, the system

in Figure 3.1 contains two separated subcircuits. The circuit becomes

coupled with the introduction of the capacitor CC. If the coupling

is too strong, the system becomes stiff and the modified Gauss-Seidel

method does not work well as seen in Table 3.3.

The conclusion of the numerical properties of the time-point

Gauss-Seidel with (or without) prediction drawn from this linear test

circuit is that (21,22], if the coupling element significantly

affects the natural frequencies of the circuit and creates a stiff

system, then no advantage is gained by using implicit integration

methods because the convergence of the Gauss-Seidel iterates requires

that the stop size be approximately no larger than the smallest time

constant in the circuit over the entire time interval. The
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computational cost can be significantly increased by this constraint,

so much so that all the advantages gained by decoupling the circuits

cannot only be lost, but the computational cost might even exceed

that of a general purpose circuit simulator.

Figure 3.3 and Figure 3.4 show that the modified Gauss-Seidel

technique goes numerically unstable when the time step exceeds the

smallest time constant of the system by a factor of three or four.

Given the above results, one would expect the modified Gauss-Seidel

method to perform poorly in the transient analysis of 3)S circuits in

which the floating Sate-drain capacitance is modeled. In such cir-

cuits the pole-splitting phenomenon [16] occurs when the transistors

are active. The degree to which the poles split determines the

stiffness of the system, and is determined by the low frequency gain

of the logic gate, e.g., slope of the dc characteristic in the active

region. However, due to the Sate delay and the nonlinear characteris-

tics of the NDS transistor, the pole-splitting phenomenon does not

seen to be very strong [10]. Figure 3.5 shows that the modified

Gauss-Seidel method works well for the 3-stage ring oscillator.

ui a ZRak i

In the other case, suppose there is a coupling capacitor between

two subnetworks whose time constants are already widely separated,

that is, in Figure 3.1 suppose g1 - 1.0, C1 - 1, and C2  21, g2

1.ox0 - 4 . Table 3.4 shows the required number of time points with a

variable time stop when the transconductance ,. 1 and the floating
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capacitor C is varied.

The nmber of time goints for variable time sten (LTB .00001)

case Cc(F) X2/X 1  method I method I method III

1 0.00 10000 570 570 570

2 0.01 10200 570 574 570

3 0.10 12000 569 608 570

4 1.00 30000 397 765 570

where

method I : Modified Gauss-Seidel Technique

method II : Gausa-Seidel Technique

method III: Standard Circuit Simulation

Table 3.4 shows the two decoupled subsystems (Ce) are already

stiff and the coupling capacitor Cc does not significantly affect the

time constants. For example, with C€ W 0 one subsystem has a time

constant equal to 1 s, and the other has a time constant equal to

10000 s. Note in this example the nmober of time points for each case

in Table 3.4 does not vary significantly as the coupling capacitor

changes. Contrary to the results shown in Table 3.3, in this case the

coupling does not affect the convergence and stability properties too

much. This conclusion also concurs with some other researcher's

observations [231.

NSj.
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In [23], Gear studied the simulation of an aircraft which was

simplified to the two-subsystem model as shown in Figure 3.6.

The control subsystem reacts very rapidly (being electronic) whereas

the flight dynamic subsystem reacts relatively slowly, being a

mechanical change. Because the dynamics are slow, his conclusion was

that, there can be very little coupling from the control to the

dynamics, and one can break the feedback loop from the dynamics to

the control and handle each subsystem separately. Here we keep C1

C2 - 1, by adjusting S, - 1 and 92 - 1-.O'1O4 to create the similar

U environment as in (23] and achieve the same conclusion.

In the next chapter, the waveform relaxation method and its

convergence and stability properties will be discussed.

I%



46

Control Flight Dynamics
Subsystem Subsystem

Sensor Control
Inputs Signals P81

Fig. 3.6 Simplified Simulation Model.w
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CHAPTER 4

THE WAVEFORM RELAXATION METHOD

AND ITS NUMERICAL PROPERTIES

In this chapter, we will discuss a second avenue by which the

relaxation of nonlinear systems has been approached. While the first

approach, presented in Chapter 3. decomposes the system into several

subsystems at the level of the difference equations, the second

decomposes the system at the level of the ordinary differential equa-

tions. This alternative relaxation method at the differential equa-

tion level must deal with elements in function spaces, i.e.,

waveforms. Thus, it is classified as the waveform relaxation method.

This approach began with the work which led to the RELAX program [9].

Either the Gauss-Jacobi method or the Gauss-Seidel method could be

used in the waveform relaxation algorithm.

A brief mathematic description of the waveform relaxation method

together with its convergence and stability properties will be dis-

cussed in this chapter. '-

4~1Mathematical Formulation

Let us recall the set of algebraic-differential equations in

Equation (3.1) and Equation (3.2) as follows:

f~x~tx~t),u)O(4.1)

%.'. .'.*

%



48

CI

E(x(0)-X )WO (4.2)

where x a RP is the unknown variable at time t with the given ini-

tial value 10; z is the time derivative of z at time t; u e Rr is

the vector of all the inputs and their time derivatives;

f : RP x RP x Rr -+ RP is a continuous function, and E a R xP ,  p

is a matrix of rank n such that E(x(t)) is the state of the system at

time t. Let { t i ; i - 0.1,...,N I denote a sequence of increasing

time points selected by the simulator with to M 0 and tN - T, where T

is the given simulation time interval.

The general frame of the waveforn relaxation algorithm con-

sists of two major processes, namely, the assignment-partition pro-

cess and the relaxation process. The dynamic system is decoupled into

certain subsystems through the first process, while the second one

yields the waveforn of each subsystem at each iteration.

.14_. Th Assignment-Partitionins Poggs

In this section, we describe the first process of the waveforn

relaxation method, that is, the assignment-partitioning process, to

decouple the system of nonlinear algebraic-differential equations

into subsystems. In the assignuent-partition process, each unknown

variable is assigned to an equation of (4.1) in which it is involved.

However, no two variables can be assigned to the same equation;

therefore, Equation (4.1) is partitioned into a disjoint subsystems

as follows
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fl (  xz1 ,  1  ) - 0

(4.3)

fa( Xa. zu. d,u ) - 0

E( x(O)-x ) 0 (4.4)

whore for each i 1, 2, ....a x i S R pi is the subvector of unknown

variables assigned to the i-th partitioned subsystem and

d i =(x 1 ., xi_1 , Zi+l, --a ZU ad(4.5)

In the i-th subsystem fi. zi and xj i 1 j are called vector

endogenous and exogenous variables, respectively. If we treat the

vectors di, i = 1, 2, .. , 2 as inputs, then (4.3) can be solved by

solving a independent subsystems. In other words, the system has been

decoupled into a subsystems, and dies are called the decoupling vec-

tors of the system. The second process, relaxation process, will be

introduced in the next section.

.14.1 At Riaaton Process

The relaxation process starts with an initial guess of the

waveform solutions of (4.1) in order to initialize the approximated
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waveforms of the decoupling vectors. It's an iteration process; dur-

ing each iteration, each decomposed subsystem xi is solved for its

endogenous variables in the entire time evolution [ 0, T I by using

the approximated waveform of its decoupling vector. The iterative

process is carried out repeatedly until satisfactory convergence is

achieved.

The actual implementation of the Waveform relaxation algorithm

can be described as follows:

.1) Assirnmnjt-artition process

Assign the unknown variables to equations in Equation (4.1)

and partition Equation (4.1) into i subsystems of equations as by

Equation (4.3).

2) Initialization f the relaxation orocess

Set k = 1 and guess an initial waveform ( x(t); ta[O, TI);

the typical guess is x°(t) - z(O) for all t a 1 09 T.

3) Analysis _f. the decomoosed sjgj Al the Ic-1. iteration

i) For the Gauss-Yacobi Waveform Relaxation method

for each i- i, 2, .. , m, set

='' " " " " "" "4 " . ..- ~ ~~~~~... .. ..... ..-.. .-. '.-..-.-.*v** -'-. '%', *'-3,.%.

*: , " ' " ''/.. . ''. >.'- .* " . . " '* ... -'* "- , -. o . ,. .. '".' ." " -



V 4" ( 4-1, 1* , - k-i * k-1

5%

(4.6)

ai . ;k-1 ;k-1 T

ii) For the Gauss-Seidel Vaveform Relaxation method

for each i - 1, 2, .., a, set

d k C 4 ,*., x 1  A- 1  
*..1"

1~4.7)1

1 1 i+l T

With the decoupling vector di's, solve for (xikt) 

t a [ 0, TI) from Equation (4.3).

1) Iteratlon "O

Set k - k + 1 and go to 3). The iteration process stops when

the difference between (xk(t); ta[ 0. TI) and (xk-l(t); ts[ 0, TI),

i.e., maxxk(t) - Zk_1(t) 11, is sufficiently =all.
ta [0,T]

In the next section, we will describe the modified window

waveform relaxation method. From a test circuit, it is shown that the

modified technique requires less CP time and memory storage.

r,'
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The Modified Waveform Relaxation lothed a" It.,

Numerical Propertles

At each iteration, the waveforn relaxation method decomposes

the system into several subsystems each of which is analyzed for the

entire given time interval. The accuracy and convergence properties

for the waveform relaxation method have been studied in (9]; however,

the huge memory storage needed to store the waveforms of each subsys-

ta in the entire time evolution E 0. T I can be expensive for large

systems.

However, in some circuits the iterates oscillate about the solu-

tion. In these cases, at each iteration only a specific part of the

waveform in each subsystem can be useful in analyzing other subsys-

tems. Under this condition, sweeping through the entire time evolu-

tion E 0, T I is somewhat of a waste in either CPU time or memory

storage. For example, for a three-stage ring oscillator in Figure

4.1, Figure 4.2 contains the solution waveforms of the circuit after

each iteration. For the waveform of the first iteration in Figure

4.2, we can find that the information beyond t1  is quite different

from that of the actual waveform, hence it's meaningless using the

waveform beyond t, to analyze other subsystems.

In the next section, we use the circuit in Figure 4.1 as an

example to illustrate the basic concept of the modified waveform

relazation algorithm.

-K
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(a) A JOS5 Ring Oscillator.

(b) The Circuit Interpretation of Its Decomposed Circuit
at The k-th Iteration of The GS-WRK Algorithm.
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Fig. 4.1 A 3-Stage Ring Oscillator.
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The Modified Wavefor elazatio Method

For the circuit in Figure 4.1, if we out the entire time evolu-

tion 0 0, T ] into n + 1 time 'Windows!. i.e., 0 0, tl ], [ t1, t2 ],

. tn, T , and, instead of sweeping the iterations in [ 0, T ].

we sweep the iterations in each time 'Window" In other words, after

reaching the convergent waveform in window 1 (i.e., E 0, t I]) then

process the iteration sweep in window 2 (i.e.,[ t , t2 ]), ..., even-

tually obtaining the waveforms in each time window. Concatenating

these waveforms yields the waveform in the entire time evolution 1 0,

T 1. This is the basic idea of the modified window waveform relaza-

tion method [121.

The fundamental algorithm of the original Gauss-Seidel Waveform

relaxation method in [9] can be described as follows

The GS.uqs-Seidel Waveform relaxation alsorith.

BEGIN

x - Voltages. Currents ]

WHILE ( bn  < Tolerance) DO

BEGIN

FOR subsystem i, i1 Tm DO

BEGIN

FOR time t = 0 TO t - T DO

BEGIN

Solve nonlinear equations

L'K
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n+1 f f(xft,...X +Dl +l,..IU)

.,xiIv-1 xi x )~p.x

and

xn1(O) - xx(O) x

END

END [ sweep m subsystems }

&n+l = max max lx n + l (t) - xn(t) II
i t

END END ( waveform iteration loop

While the Modified Window Waveform relaxation method is of the

following formI

The Modifle Window Wavefor elaxaon alaorithm

BEGIN

x - [ Voltage*, Currents ]

w - [Windows]

BEGIN

FOR window J, j - I TO k DO

BEGIN

FOR subsystem i, i i TO m DO

. ..... --



n-

WE bn <Tolerance )DO

BEIGIN

FOR time t 0TO t t DO

Solve nonlinear equations

ia+ 1 f n+1 n+1, n+1 a an

and

In(0) xn(0) z~

END (sweep m subsystems)

&n+l -mazuax II n+l(t) - n(t) f
i t

n -n + 1

END (waveform iteration loop

Sjj+ I

END Iwindow process

END

For the ring oscillator circuit, Figure 4.2a and Figure 4.2b

show the waveforms after each iteration taking the whole time inter-

val [0, T I as the time window, whereas Figure 4.3a and Figure 4.3b

show the waveforms for taking the window size half of the entire time



interval r0. T I.From Figure 4.2a and Figure 4.2b we find that the

umber of iterations increases as the coupling capacitors increase.

In Figure 4.2a, when there is no coupling capacitors, it takes 4

iterations to achieve convergence. In Figure 4.2b with the introduc-

ing of the coupling capacitors, it takes 10 iterations to achieve

convergence.

Comparing the waveforms in Figure 4 .2b with the waveforms in

Figure 4.3b, one can find the effect of the window sizes on the

waveforms. In Figure 4.2b the converged part of the waveforss

increases (propagates) about a half cycle per iteration, while in

4 Figure 4.3b it increases (propagates) about one cycle per iteration

and, hence, needs a fewer umber of iterations than in Figure 4.2b to

achieve convergence for the entire time interval. It is found that

in Figure 4.3b it takes 6 iterations to achieve convergence, while it

takes 10 iterations to achieve convergence in Figure 4.2b.

During the iterations, the waveforms oscillate about the exact

solution. Table 4.1 shows the results for different sizes of the time

window under different degrees of coupling capacitance.
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Table 14
Number of iterations in each window to reach conversence

window size QO 0-0.5 Q-1.0 Q-1.5

T 4 6 6 6

T/2 3 5 5 4 v3

T4 3 3 4 4

T/10 2 3 3 3

T/500 1 3 3 3

* (Q is the ratio of floating capacitance to the ground capacitance)
,* Use fixed time step h - T/500 in each window.

It is easy to conclude that the modified window waveform relaxa-

tion method achieves more accurate results with less memory storage

and less CPU time. The problem that arises with the introduction of

the modified waveform relaxation algorithm is how to choose the loca-

tion and size of the windows. In other words, how should the time

interval be cut into several subintervals dynamically? This is an

interesting open topic. In the next section we study the convergence

properties of the waveform relaxation methods as a function of the

coupling and window size.

."

,% -a
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4.2.2 The Numerical Properties of The Waveform Relaxation Metho

Mathematically, the convergence of the waveform relaxation

method has been discussed in [9]. For an important class of dynamic

systems, NDS digital integrated circuits, it is concluded [9] that

for NDS circuits with a grounded capacitor at each node convergence

is guaranteed for any arbitrary piecewise continuous set of initial

waveforms for the node voltage of the circuit.

In this research, we would like to study the numerical proper-

ties of the waveform relaxation algorithm from a different point of

view: the effect of the system stiffness on this algorithm. Practi-

cally,. in order to investigate the numerical properties of the modi-

fied waveform relaxation method , we used the same linear model of

the NOS inverter as shown in Figure 3.1 to see the effect of stiff-

ness on the transient analysis of NOS circuits. The implementation

of the waveform relaxation algorithm to this linear test circuit is

shown in Figure 4.4. In Figure 4.4a, at the (k+l)-th iteration, the

node voltage vk+l(t) is determined with the node voltage v2(t) frozen

at vk(t) which is the waveform at nods #2 at k-th iteration. Once

Svk (t) is found, we go to Figure 4.4b and place a grounded voltage

source vk+l(t) at node #1 and solve for vk+l(t), then repeat the

iteration until convergence is achieved.

If the backward Euler formula is used, the iterative procedures U
are described by following equations:

-- , ' ,. ia~ ', ,. * * ' " 
' '

"'" .: '.i .ij.,-,- " *" 'm um ilnan"""" """" "lnll
' "

.. -"- * "- "" "' ' " " : .' ."' - , * -> '' - . .. ..
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isW_ 1_ i 7C, Vk 1 (t)

Vk+1 (t) gm {9 Vi C

(b)

FP-68313

Fig. 4.4 The Ispimentation, of the Wavef or. Relaxation Method
to the Teat Circuit in Fit. 3.1.
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k+1

(4.8)

-hn 2,n+l mi~ 1 1 l)

and

C2 c) vk+1+ ~k+1 - a k+l

g n2 + ) +  SIR ln+1 - 2,n

(4.9)

C+ vkL+I _ k+1 -_ k +1 =0

h 'a2n n n+

k+1U where ha is the size of the tine step and vl,,+ 1  is the voltage of

node #1 at the (k+l)-th iteration at (n+l)-th time point. Equation

(4.8) and Equation (4.9) are solved iteratively util convergence is

achieved.

The modified waveform relaxation method solves (4.8) and (4.9)

in each time window and concatenates the results yielding the

waveform in the entire time interval. Table 4.2 shows the required

number of iterations in each window to Set a convergent solution.

, 1.
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Nuber able j.1j
Number of iterations for VI with h 0.1

case C0  m T1--X1 :2--I2 X2/1 Node eq State eq

1 0.01 1.0 1.1 0.92 1.22 1 2

2 0.10 1.0 1.5 0.80 1.88 2 3

3 1.00 1.0 4.3 0.70 6.17 5 4

4 0.01 100.0 2.6 0.39 6.80 5 4

5 0.10 100.0 12.1 0.099 122.00 SO 7

6 0.01 1000.0 11.9 0.0857 140.00 b* 10

7 0.10 1000.0 102.0 0.012 8696.00 C* 10

a*:greater than 300
b*:greater than 600
c*:Sreater than 1000

The results in Table 4.2 were obtained with a fixed step size h

= 0.1 a. However, from Figure 4.5 we find that similar results were

obtained with h - 0.01 s and h - 0.001 s. because in stiff systems

the convergence rate of the waveform relaxation method depends on the

window size, that is. the time increment over which the iteration is

performed. Figure 4.6 graphically illustrates the convergence charac-

teristios of the waveform relaxation method for a given stiff system.

For example, in the case Cc - 0.01 F and g = 1000 S, the convergence

rate as a function of the window size Is shown in Table 4.3 for a

fixed step size h = 0.1 s.

..........
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0@1: r -140, h-.O1

01 3: r - 122, h -O.1
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Window Size (s), r is Ratio of Time Constants r-P-312

Fig. 4.5 Waveform Relaxation Method Converges as a Fumat ion
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Tne abl

Converaence es a function of window size

Window size # of iterations

4s >600

is 200

0.58 90

0.2s 35

0.1 3

Thus, in the first case the waveforms were relaxed over the

entire 4 s interval and over 600 iterations were required for the

iterates to converge to the solution. When the waveforms were parti-

tioned into four windows, 200 iterations in each window were required

to achieve convergence. Finally, Table 4.3 shows that rapid conver-

gence of the waveform relaxation method was not achieved until the

waveforms were partitioned into forty 0.1 a windows. In this case,

the window size (0.1 s) is approximately limited to the smallest time

constants (0.085 s) to achieve reasonable convergence speed.

_ The Waveform Rlaj Uelhod Apulied to the State kauations

The equations for the test circuit in Figure 3.1 can be rewrit-

ten in the following state equntion format assuming is(t) = 0,

-**.4



68

[J= A (4.10)

where

A11,) - E -(C2 + Cc)&, - CON MIDE

A(1,2) - I -C oS2 ]/DE

A(2.1) - -(C1 + CO)8M - Cos1 1/DE

A(22) - [ -(C1 + C0)S 2 ]/DE

and

M - CjC 2 + Cc ( CI + C2 )

Applying the waveform relaxation method to Equation (4.10) yields

"k 1 k1 1
k1 . A(2,1) v1 + A(1.2)

1 1 2(4.11)

A(2i. AU vk+l + A(2,2) 12

Applying the backward Euler formula to Equation (4.11) yields

Sk+1 k4-1 k
1hn-A(l,l) 0 /h + A(I,2)V2on+1

1u+1 vl'aa2.4
a, (4.12)

-A(2,1) 1/h -A(22)_ k1 l

L a ~ 2.4I 2,a

dS(22 J L**-,.-J L in n

LI tlIAA V
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Solving Equation (4.12) gives the results in the last column of

Table 4.2. It is found that if we process the system from the

viewpoint of the state equation instead of the node equation, then

the waveform relaxation technique is not affected by the stiffness of

the system. Unfortunately,.in a practical implementation. it is hard

to formulate a large system on the computer in the form of the state

equation.:on:luEi:5g Remarks
Table 4.2 shows that the waveform relaxation method does not

work well for the analysis of linear stiff systems. The waveforms of

each iteration oscillate about the solution, and an excessive number

of iterations are required for convergence [21,221, unless the time

windows are approximately the size of the smallest time constant of

the system. Since the time window is limited to the size of the smal-

lest time constant, in order to achieve convergence in a few itera-

rtions, an excessive number of time windows are required to cover one
simple transition of the waveform.

The accuracy and convergence properties for the waveform relax-

ation method have been studied in [9]. In this chapter, we have shown

that, in the modified waveform relaxation method, the flexibility of

setting the time window saves both the computation time and the

memory storage. Although the convergence of the original waveform

elaxation method is guaranteed for any arbitrary piecewise continu-

ous set of initial waveforms [91, its convergence is slow in stiff

....
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CAPTER 5

EVW4T-DRIVDM AND LATENCY SCH"ES

Previous works such as NTIS-C, SPLICE and RVOLAX showed that

considerable improvement in speed can be achieved with the exploita-

tion of relaxation techniques. But they were limited to the simula-

tion of NDS circuits. A dominant factor which yields the performance

improvement for these simulators is the use of simplified device

models. Hence, in this study we investigate the performance of the

time-point relaxation method for the simulation of both UilS and bipo-

lar digital circuit technologies. Performance is also investigated as U

a function of the device model.

The time-point relaxation method is implemented in the general

purpose circuit simulator SLATE [81, and contrary to other relaxation

simulators, such as NOTIS, SPLICE, and RELAX, accurate analytical

device models are included in the simulator.

j4Brief Review Af LhA f tsu

The tearing approach [81 decomposes a system into certain sub-

systems. There are two tearing methods, namely, the node tearing

decomposition and the branch tearing decomposition. The former is

preferred (8] and is implemented in the SLATE program. As shown in

Figure 2.3, the entire circuit is decomposed into several subeir-
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tion matrix equation as follows:

yt[t t vt its (5.2)

,Wheore
* kY. Ytt Y Ytt - Ytsiltsi) lysti

and

its = ts X~ Y tsi(Ysil-lTssi

Equation (5.2) is solved to obtain solutions for v t and v and next

each subeircuit can be solved by using backward substitution. For

example, the resulting modified nodal equation in SLATE for the cir-

cuit in Figure 5.1 yields:

p p' ! ' ~ '
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systems and requires a large amount of memory, whereas the time-point

relaxation technique only suffers the former weakness. Thus, it was

concluded that one is better off using the time-point relaxation

method in a special purpose circuit simulator for digital circuits.q

In the next chapter we describe how the SLATE program (81 was

modified to include time-point relaxation. Then its performance for

the transient analysis of digital circuits implemented in various

technologies is given.



-7 f° 1

7"

3 5 7 8 10 11 1 2 4 6 9

3 x xI x x V3 1

8 1 x 8

1 0 x x 1  x x• •1 1 0

----- 4---- -- x -

10 IX X x x v10 ~110~11 x x x x v1 11, (5-3)

2x Ix x V4 34ix x v2  -T2

4 x xI 3"94 v4

Following the procedure in SLATE. the first stop is to LU fac-

tor the block triangular terms in order to compute the tearing node

voltaes 4  6 and v9. Ien the internal node voltages for each

subcircuit can be determined by backward substitution.

In SLATE, because of the use of tearing, only one subeircuit

description for each type of repetitive subcircuit need be stored,

and only one set of sparse matrix pointers of the small submatrix f or

each type of repetitive subcircuit is needed so that both storage and

preprocessing times can be saved. If one type of subeircuit is

linear, then the LU factorization of that type of suboircuit need be

rI .
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cuits. The nodes of each subeircuit can be classified as the internal

nodes and the external (tearing) nodes. After partitioning (which is

done by the user), the initial step in the solution strategy of the

node tearing method is to reorder the nodes such that all the tearing

nodes are located on the border while the internal nodes for each

subeircuit are located on the diagonal blocks. The resulting modi-

fied nodal equation of the node tearing decomposition from [8] is as

follows:

Ys 31 Ystl V51 Ise1

I -C
_s2 Tst2 vs2

0 I

0.

sk Y stk Vk ;s

Ytst Yts2' - tsk1 TYtt I Ytr v tit

rt Yrr v r _ L rs -j

where vsi is the set of the internal nodes for the i-th subcircuit,

vt  is the set of all the tearing nodes, and vr is the set of the

nodes for the "test" of the circuit ('test"' the remaining part of

the circuit after all the subaircuits are removed).

The procedures for solving the equations in SLATE are first:

eliminate all the Yts, via LU factorization to get the interconnec- 1

ti"



77

We use the same circuit in Figure 5.1 to illustrate the parti-

tioning and solution procedures in the implementation of the relaxa-

tion technique. In order to apply the modified Gauss-Seidel

approach, Equation (5.3) is partitioned as follows:

1 4 2 3 5 6 7 8 9 10 11

1 x x x x Vi  T

4 X1 x x v4

4 4

3" I33"

-, 5 x xx v 15

6 x X x t x x v6  -T6 (5.4)

7 x ix x X17 37

x v -,
8 '8

9 x x • v9 9 "
9~~ 1xx 2 39

10 x xX v10 110

11 x I x vl1  jjl .I

From the algorithm of the modified Gauss-Seidel method, v7  and
- C7

V8 are relaxed by using a predictor v7 for v7 , and a predictor v8 for

V 8 ; then, the variables v2 , v3 and v5 of the first subcircuit are

solved from the 3x3 matrix. The rest of the subcircuits are solved

one at a time sequentially in a similar manner. In order to use the

same matrix pointers for identical subcircuits, the tearing nodes and

the DC power supply nodes are split in program implementation, such
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clio. From the viewpoint of circuits, the topological ordering is

possible only for one-way circuits. If feedback loops exist in the

circuit, the directed graph G is no longer acyclic. The directed

graph G is said to have strongly connected components (SCC) for cir-

cuits with feedback. The strongly connected components of the

directed graph G can be found in linear time complexity by using

Tarjan's algorithm [24].

For the circuits with feedback loops, basically, there are two

approaches for sequencing the vertices in the directed graph G. One

D is to contract the strongly connected components into one new suboir-

cuit, which results in a new acyclic directed graph G' [25]. The

problem with this approach is that the size of the subcircuits after

contraction could become too large for the analysis to be efficient.

In large-scale circuit simulation one should always try to keep the

size of the suboircuits small to make the analysis time linearly pro-

portional to the size of the entire circuit. The other approach

processes the directed graph G directly without any contraction by

breaking the feedback loops. Predictors are used for the decoupled

terms.

The algorithm used in SLATE-R combines the above two approaches.

First of all, the Tarjan's algorithm is implemented to detect the

strongly connected components (SCC) in the directed graph G and col-

lapses each SCC into one new vertex which results in a new acyclic

directed graph G'. Then a topological ordering is chosen as the order

in which the vertices in the new directed graph G' are processed dur-

H .. ~ , : ::. , ii- ,,.,; i.ii , !i !
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done only once. The other benefit for using the tearing method is

the exploitation of latency. During the analysis, only the active 4

parts of the circuit need to be solved and this reduces the computa-

tional time considerably.

However, there are additional features that could be added to

SLATE to shorten the simulation time. For example, no event schedul-

ing techniques are being used in SLATE, and there is no decoupling

scheme in SLATE so that the entire circuit matrix must be inverted.

The idea and implementation of the SLATE-I program (a Simulator with

Latency and Tearing -Relaxed version) are shown in the next see-

tions.

.2 The Relaxation Techniaue

The first procedure of the relaxation decomposition is the same

as that of the tearing decomposition: partition the circuit into sub-

circuits. Current versions of those simulators which use the decom-

position technique partition the circuit via the definition of sub-

circuits that is specified by the user. The only difference in the

input processes of the circuit file between SLATE and SLATE-R is

SLATE-R has to identify the fan-in and fan-out nodes for each subcir-

cuit while SLATE only needs to record the external nodes no matter if

they are fan-in or fan-out nodes. In SLATE-R the circuit input file

is changed such that it is easy to identify the fan-in nodes and

fan-out nodes. In the next chapter we describe the process of the

circuit input file in the SLATE-R program.

!-,,
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We use the sane circuit in Figure 5.1 to illustrate the parti-

tioning and solution procedures in the implementation of the relaxa-

-. tion technique. In order to apply the modified Gauss-Seidel

approach, Equation (5.3) is partitioned as follows:

1 4 2 3 5 6 7 8 9 10 11

1 £ X I Iv 1 ] Y

xl ix v 1

X1 x 4 14

2 z x x x x v2 I 2
3I I x 2 v3 J3
S xli x x Iv

6x x 6 : 6 (5.4)

10 I2 x x '10 j10

11 x I x V 1 1 ' j

From the algorithm of the modified Gauss-Seidel method, v7 and

VS are relaxed by using a predictor v7 for vT, and a predictor v; for

V8; then, the variables v2 , v3 and v5 of the first subcircuit are

solved from the 3x3 matrix. The rest of the suboircuits are solved

one at a time sequentially in a similar manner. In order to use the

same matrix pointers for identical subcircuits, the tearing nodes and

'C the DC power supply nodes are split in program implementation. such
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that each identical subcircuit has the same matrix formation. For the

example circuit in Figure 5.1, the suboircuit one contains nodes 1,

2, 3, 4 and 5; suboircuit two contains nodes 1, 6, 7. 2 and 8, with

two voltage sources (and two corresponding current variables) in each

subcircuit, the relaxation approach needs to solve three 7x7 subma-

trice*, while the SLATE program is to solve one l3x13 matrix.

. ~ Event-Drive- Technione

In the solution strategy of the relaxation techniques, once the

whole circuit has been partitioned into several suboircuits, the next

procedure, which is called the event-driven technique, is to sequence

the subeircuits to be simulated, i.e., to select a well-chosen order-

ing in which the suboircuits are to be processed. In our research,

event-driven algorithms will be implemented on the basis of fan-in

fan-out topologies, such that the resulting modefied nodal equation

is in the form of Equation (5.4) with the internal nodes and fan-out

nodes of each suboircuit in diagonal blocks.

A circuit that is composed of unilateral subcircuits can be

represented by a directed graph G(V,E). where each vertex in V

corresponds to each suboircuit and each edge in E corresponds to each

signal line from fan-out to fan-in. A 'gooV' ordering will be one in

which a subcircuit is processed only after all its fan-in subeircuits

have already been processed; in other words, the event-driven tech-

nique is to arrange the vertices in a topological order. However, the

directed graph G has a topological ordering if and only if it is acy-
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clio. From the viewpoint of circuits, the topological ordering is

possible only for one-way circuits. If feedback loops exist in the

circuit, the directed graph G is no longer acyclic. The directed

p graph G is said to have strongly connected components (SCC) for cir-

cuits with feedback. The strongly connected components of the

directed graph G can be found in linear time complexity by using

Tarjan's algorithm [241.

For the circuits with feedback loops, basically, there are two

approaches for seqnencing the vertices in the directed graph G. One

is to contract the strongly connected components into one new subeir-

cuit, which results in a new acyclic directed graph G' 1251. The

jproblem with this approach is that the size of the suboircuits after

contraction could become too large for the analysis to be efficient.

In large-scale circuit simulation one should always try to keep the

size of the subeircuits small to make the analysis time linearly pro-

portional to the size of the entire circuit. The other approach

processes the directed graph G directly without any contraction by

breaking the feedback loops. Predictors are used for the decoupled

tems.

The algorithm used in SLATR-R combines the above two approaches.

First of all, the TarJan's algorithm is implemented to detect the

strongly connected components (SCC) in the directed graph G and col-

lapses each SCC into one new vertex which results in a new acyclic

directed graph G'. Then a topological ordering is chosen as the order

in which the vertices in the new directed graph G' are processed dur-I
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ing each iteration. In order to set up the order in which the suboir-

cuits within each SCC are processed, the following algorithm [26] is

Implemented to set up the analysis sequences. In order to describe

the algorithm, the following notations are introduced:

Gsco(V.K): the directed graph of each SCC.

adj(v): set of adjacent vertices corresponds to the set of ver-

tices with an edge which fans out to vertex v.

la(v): label of vertex v.

Procedure

[1] Set la(vi) - 0 for each vertex vi of GSCC(V)

[21 2. la(vi)=1 for each vertex vi which corresponds to an input

signal terminal.

k-l.

[31 k-k+l y

Choose a vertex v where la(v )=O and la(vi)#O for all v, a

adj(vj). If there is no such vertex, choose a vertex vj connect-

inS to a vertex which has the lowest label.

la(v )-k.

[41 Repeat step (3) until all the vertices in Gac (V.E) are labeled.

It is claimed in [261 that the above algorithm can find all

feedback loops which will be broken during the analysis sequencing. -

U

. . . . . . I



For arbitrary networks, this algorithm may not be satisfactory in

identifying minimal feedback loops as other complex algorithms do

[27]. However, because the accurate device models are used in LATE,

coupling parueters such as the floating capacitor from drain to gate

in JOS devices and the terminal resistance at each log of the bipolar

transistor devices will cause the subeircuits to have a certain

degree of coupling. In this case, our solution strategy is to label

the vertices in sense of 'Vepth-first searce' approach and to use a

predictor to cut all the feedback loops. Another fact is that itera-

tions among suboircuits are continued until convergence is reached.

The worst case for 9.mproper" ordering is at most the necessity to

process one more iteration at each time point. General algorithms

are not cost effective because the complexity grows exponentially

with the size of the network [27]. For these two reasons we imple-

ment the simple analysis sequencing algorithm in our program. In the

next section, we will describe the concept and experimental results

of latency exploitation.

.4 Laten Exloitatio

In large-scale circuit analysis, a part of the circuit may be

not active at any given time and at any particular iteration. This

phenomenon is called latency [28]. Exploitation of the latency can

provide savings in CPU time. In the program LATE, the latency con-

cept is implemented at three levels: (1) device level; (2) suboircuit

level; and (3) network level.

j,10 P' - N N-. ........ - .. ..-. -. . , .. ..
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At the device level, the operating point of each nonlinear dv-

ice is monitored. If the operating point does not change signifi-

cantly between time points or Newton-Raphson iterations, the device

models need not be reevaluated, and the matrix entries computed at

the previous time point or the previous iteration are used again.

This level of latency is also called the device bypass level which is

used in SPICE2 and SPLICE. Because the node tearing method is imple-

mented in SLATE, the latency strategy can be used in the network

level through the exploitation of the substitution theorem in the

formulation of interconnections [8]. While with the relaxation

method, there is no bordered interconnection matrix, in the SLATE-R

4 program we only consider the exploitation of latency at the bypass

level and subeircuit level.

The relaxation method deals with each subcircuit individually,

with the use of the predictor to decouple the coupling terms. There-

fore the exploitation of the latency can be implemented at the sub-

circuit level, either in the Newton-Raphson iteration or at the time

point level. The idea is that if there is no significant change

between Newton-Raphson iterations or time points, then the latent

suboircuit can be skipped in the analysis. The latent status of a

subeircuit can be checked by monitoring the changes of all its

stimuli and all its responses to ensure that the change is within

certain predetermined tolerances.
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.A. The Latency Criterion

For the subaircuit Nk, denote the fan-in node voltages as vik D

p-1,2...., and the internal and output node voltages of Nk as vok
q

q-12... The following latency scheme is implemented in the

SLATE-R progrm.

Latency Scheme:

A suboircuit Nk is considered to be latent at time tn if the

following two conditions are satisfied:

E1l V ik-(t) vik(tw-1 ) &< a +rmax(lvik (tn)i•vik (t-1)I

h [2] 'oo (tn) Vok (tn- )  ( sa + asmax(Ivok (tn)IlIvok (tn -)t

q1l•2 •...

The subeircuit Nk will remain latent at time tn+j as long as

I v (tn+j) Vik p tn- ) I (s a +'
p p

9 max C I Vik (tn+j ) I, I Vik (tn-I) I

p-,, .2 ,.-.

If the suboircuit is not latent in time, we can still consider

the latency in Newton-Raphson iterations. A subcircuit Nk is con-

sidered to be latent at time tn during the ith Newton-Raphson
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iterations if the following two conditions are satisfied: K

L.

[1] IV t Vik l - 2 ) I<a +

r ax ( I Vik(tn'i- 1) I I Vik(tnDi) I"

q-1,2,...

.4.2 Exoerimental Results for Latency Exyloitation

The latency scheme described in the last section has been suc-

cessfully implemented into the relaxation version of the program

SLATE. Table 5.1 and Table 5.2 give the simulation data corresponding

to the circuits shown in Figure 5.2 and Figure 5.3 respectively. In

order to see the latency exploitation at the Newton-Raphson iteration

level, here the dc analysis is performed, while Table 5.3 gives the

simulation data for the circuit shown in Figure 5.4 for both DC

analysis and transient analysis.

6-,



Table 5.1 Simulation data of a DC analysis
for the NOS circuit in Figure 5.2

DC Analysis With Latency Without Latency

# of subeircuits
times # of 275 275
iterations

# of nonlatent
subcircuits times 157
# of iterations

Latency exploitation (%) 42.91

Total CPJ time (see) 5.63 7.68

Savings in CPU 26.69
time (M)

ii

* -~,
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Table 5.2 Simulation data of a DC analysis
for the NDS circuit in Figure 5.3

DC Analysis With Latency Without Latency

# of subircuits
times # of 391 391
iterations

# of nonlatent
suboircuits times 214
# of iterations

Latency exploitation (S) 45.27

Total CPU time (sec) 11.87 14.82

Savings in CPU 19.91
time (se)

.J.

'4
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Fig. 5.2 (a) Subircuit: An NDS Inverter Gate.
(b) Entire Network: A Chain of Inverters.
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In these tables we find that the savings in CPU time is not the

same for the latency exploitation. For example, in Table 5.1. for the

11-stage chain of inverters. a 42.91% latency exploitation was

achieved and a 26.69% savings in CPU time was obtained, because some

of the CPU time has to be spent in the latency chockinS which makes
the difference between the percentage latency exploitation and the

percentage savings in the CPU time. In Table 5.2, for the Binary-

to-Octal decoder, a 45.27% latency exploitation was achieved and a

19.91% savings in CPU time was obtained, because the latency eploi-

tation only counts the number of those latent suboircuits, and all

the suboircuits are preassued to have the same size. However, the

suboircuits may have different sizes which also make the difference

between the latency exploitation and the CPU time savings. From

Table 5.3, for the one-bit full adder, a 14.75% savings in CPU time

was achieved in DC analysis and a 22.91% savings in transient

analysis was achieved, because in transient analysis we can take the

advantages of the latency exploitation in the Newton-Raphson itera-

tion level as well as the advantages of latency exploitation in the -*

time level.

%'j
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- Table 5.3a Simulation data of a DC analysis
for the NO0S circuit in Figure 5.4

DC Analysis With Latency Without Latency

# of subeircuits
times # of 150 150
iterations

# of nonlatent
subeircuits times 107
# of iterations

Latency exploitation (S) 28.67

Total CPU time (see) 6.18 7.25

Savings in CPU 14.75
time (%)

Y

4 --
' '
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Table 5.3b Simulation data of a transient analysis
for the NiDS circuit in Figure 5.4

Transient Analysis With Latency Without Lateno

# of subaironits
times # of 840 840
iterations

# of nonlatent
subcircuits tines 597
# of iterations

Latency exploitation (S) 28.92

Total CPU time (see) 31.95 41.45
_U

Savings in CPU 22.91
time (S)

S"€

U-.

* * ~* .
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-j Numerical Properties

In Chapter 3, the linear test circuit in Figure 3.1 has been

used to study the numerical properties of the Gauss-Seidel tech-

niques. This test circuit was generated by linearizing the modal of

a cascade of two inverters in which the transistors are assumed to be

active. By changing the parameters, i.e., the coupling term C and

the signal gain ap we can adjust the degree of stiffness in our

linear test circuit.

In practical circuits, the coupling terms and the signal gains

are technology-oriented. In this section, different technologies

such as NNOS, C1S and bipolar junction transistors are used to

implement the cascade of a two inverter test circuit. The NIUDS

inverters and CNOS inverters are shown in Figure 5.5 and Figure 5.6,

respectively. Figure 5.7 shows the T circuit, Figure 5.8. shows the

EML circuit. Table 5.4, Table 5.5, Table 5.6 and Table 5.7 show the

corresponding simulation data.

W--,'.
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Iw FP-4=0

Fig. 5.5 NIBS Circuits.

The input file for the circuit in Fig. 5.5

a 11-stage chain inverter circuit
finverter
.subckt in, 10 3020 2
0010 nodes: vdd input output
.1 10 20 200 da w- 1-10-
+ as-25 ad-IS ass-iS asd20 cgsl1.725f cgd'.1.725f
+ rdd=35 rss-35
.2 20 300 0 em v-10 1-5
+ as-100 ad-100 ass-4O asd-3S cgs-3.45f cgdin3.45f
+ rdd-35 rss-33

* nominal circuit
vdd 100 5
vcl 9 0 pulse(0 5 0 2n 2n 125n 254n)
11 10 9 11 mnv
x.2 10 11 12 mnv
.model do os vto.-2 kp-l0u bein0.52 laubda-0.05 kpn=0.0918f
+ as-0.33 cox-0.345f

muodel I s os vto-1 kp-10u be-0.32 1aubds-0.05 kpn'.0.0918f
+ us-0.33 cox-0.345f
.print tran v(9) v(10) v(11) v(12)
.tran InS50n
.end
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Fig. 5.6 CNDS Circuits.

The input file for the circuit in Fig. 5.6

a 11-stage chain inverter circuit
*inverter

.subckt inv 10 20 30
KA 0*0 nodes: vdd input output

ml 10 20 30 10 rl 1-5 I"
+ as-25 ad-2$ ass-15 ssd.20 cgs-l.725f cgd1.725f
+ rdd-35 rss-35
A2 30 20 0 0 am2 v-12.5 1-5
+ 4 as-100 adlOO ass-40 asd-35 cgs-3.45f cgd-3.45f
+ rddm35 rss-35
.ends
* nominal circuit
vdd 10 0 5
vcl 9 0 pulse(5 0 0 30n 2n 60n 40n)
zl 10 9 11 isv
x2 10 11 12 iv

.model al pmos vto--1 kp-Su be-0.$2 Imlbda-0.O5 kpn-0.0918f
+ u-0.33 cox-0.345f
.model m2 mos vtc-1 kp-20u be-0.52 lmbda-0.OS kpa-0.0918f
+ as-0.33 coz0.345f
.print tran v(9) v(10) v(11) v(12)
.tran lnSOn
.end

,.i,
.. ,. -, ., ,- , . .. , -.- . .. ,,. ..: ,, ,'( .. ,- ... . .,- * .. ., .. - .- .. .: * .:? '.* .
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The input file for the circuit in Fig. 5.7 97

Bipolar TIL inverter
.ubckt inv 1 9 8 2
* input node(l) output node(S)
rl 9 2 4k
r2 40 lk
3 9 5 1.4k

r4 9 6 100
q1 3 2 1 bjp
q2 5 34 bjp
q3 6 5 7 bjp
q4 8 4 0 bjp
dl 7 8 diode
.ends
x1 2 9 3 inv
x2 3 9 4 imv
v2 2 0 pulso(0 5 0 30n 2n 60n 40n)
vdd 9 0 5
.model bjp npn(bf=100 br-0.1 re-100 va-200 nc-i ne-i
+ eje-2p cjc-2p ecs-2p)
.model diode d(rs=0)
.print tran v(2) v(3) v(4)
.tran in,30n
.end

4.' A
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The input file for the circuit in Fig. 5.8 9

Bipolar EC inverter

iptnode(7) output node (8)
rl10 300
r2 2 0 300
r3 35 1.18k
r4 5 8 1.5k
q2 1 7 3 bjp
q3 2 4 3 bjp
q4 0 18 bjp
vrr 4 0 -1.1

ITI ~ vdd 5 0-5.2
ends

x1 2 3 imv
x2 3 4 imv
v2 2 0 exp(-1.5 1.5 0 30n 2n, 60n 40n)
.model bjp npn(bf=100 br=-O.1 rb=200 va-200 nc=1 ne=1

+ cje-2p cjcl2p ccs-2p)
.print tran v(2) v(3) v(4)
.tran 'flD3 Of
.end
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Table 1.A

NKOS inverters with signal i - 9.

time time stop coupling # of iterations

0 0 0 0 11
1 .50000-10 .5000e-10 .48298.-03 3
2 .1000.-09 .50000-10 .48298e-03 3
3 .3000e-09 .2000e-09 .24149e-03 3
4 .1100.-08 .8000e-09 .60374o-04 4
5 .2000e-08 .90000-09 .53664e-04 5 -
6 .2050e-08 .5000.-10 .48297--03 3
7 .2100e-08 .$000e-10 .96593o-03 3
8 .2300e-08 .2000e-09 .24147e-03 3
9 .3100e-08 .8000e-09 .60373e-04 4
10 .5100.-08 .2000e-08 .23489e-04 6
11 .7100e-08 .2000e-08 .19379e-04 4
12 .9100e-08 .2000e-08 .19400e-04 4
13 .1110e-08 .2000e-08 .18400e-04 4
14 .1310e.-08 .2000e-08 .18400e-04 4
15 .1510.-08 .2000.-08 .18400e-04 4
16 .1710.-08 .2000e-08 .18400o-04 4
17 .1910e-08 .2000.-08 .18400e-04 4
18 .2110e-07 .2000e-08 .18400o-04 4
19 .2310o-07 .2000.-08 .18400e-04 4
20 .2510o-07 .2000e-08 .18400e-04 3
21 .2710e-07 .2000e-08 .18400e-04 3
22 .2910.-07 .2000e-08 .18400e-04 3
23 .3110o-07 .2000e-08 .18400e-04 3
24 .3310o-07 .2000e-08 .18400*-04 3
25 .3510e-07 .2000e-08 .18400e-04 3
26 .4710e-07 .2000e-08 .18400e-04 3
27 .3910.-07 .2000e-08 .18400e-04 3
28 .4110o-07 .2000e-08 .18400e.-04 3
29 .4310s-07 .2000e-08 .18400e-04 3
30 .4510e-07 .2000e-08 .18400e-04 3
31 .4710e-07 .2000e.-08 .18400o-04 3
32 .4910e-07 .2000e-08 .18400e.-04 3
33 .5000e-07 .9000.-09 .40889e-04 3

L.
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NKOS inverters with sgnal j i 21

time time stop #of iterations f

0 0 0 11
1 .50000-1O .5000.-1o 3
2 .1000.-OP .5000.-1O 2
3 .3000.-OP .2000.-O9 2
4 .1100.-OS .80000-OP 4
5 .2000e-O8 .90000-O9 5
6 .2050e-O8 .3000.-1O 3
7 .2100.-OS .5000.-10 2
8 .2300.-OS .2000.-O9 3
9 .3100.-OS .8000.-OP 3

10 .5100.-OS .2000.,-OS 4
11 .7100e-OS .2000.-OS 3
12 .9100e-OS .2000e-08 3
13 .1110.-OS .2000.-OS 3

P14 .1310.-OS .2000.-OS 3
15 .1510.-OS .2000.-OS 3
16 .1710.-OS .2000.-OS 3
17 .1910.-OS .2000.-OS 3
18 .2110e-07 .2000.-OS 3
19 .2310o-07 .2000.-OS 3
20 .2510o-07 .2000.-OS 3
21 .2710e-07 .2000.-OS 3
22 .2910o-07 .2000.-OS 2
23 .3110e-07 .2000.-OS 2

p24 .3310e-07 .2000.-OS 2
25 .3510e-07 .2000.-OS 2
26 .4710e-07 .2000.-OS 2
27 .3910e-07 .2000e-O8 2
25 .4110o-07 .2000.-OS 2
29 .4310*-07 .2000.-OS 2
30 .4510o-07 .2000.-OS 2
31 .4710o-07 .2000.-OS 2

32 .4910*-07 .2000.-OS 2

h33 .5000e-07 .9000.-OP 2I
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Table 1.3a

CMOS inverters with sianal aim - 11.7'

(SLATS-Z)

tine time step coupling # of iterations

0 0 0 0 13
1 .5000e-10 .5000e-10 .81705e-03 $
2 .1000e-09 .5000e-10 .81705e-03 4
3 .3000e-09 .2000e-09 .40537e-03 4
4 .1100e-08 .8000e-09 .83374e-04 $
5 .3100e-08 .2000e-08 .33350e-04 4
6 .5100e-08 .2000e-08 .33350e-04 4
7 .7100e-08 .2000e-08 .33350e-04 4
8 .9100.-08 .2000e-08 .33350@-04 4
9 .1110e-07 .2000e-08 .33350.-04 4
10 .1310e-07 .2000e-08 .33350e-04 4
11 .1510e-07 .2000e-08 .33350e-04 4
12 .1710e-07 .2000e-08 .33333e-04 7
13 .1910e-07 .2000e-08 .37545e-04 7

14 .2110e-07 .2000.-08 .37662e-04 5
15 .2310e-07 .2000e-08 .37662e-04 3
16 .2510o-07 .2000e-08 .37662e-04 s
17 .2710o-07 .2000e-08 .37662--04 3
18 .2910.-07 .2000e-08 .37662e-04 4 -

19 .3000.-07 .9000e-09 .83674o-04 3
20 .3050e-07 .5000.-10 .75325e-03 4

21 .3010e-07 .5000.-10 .15065o-02 4
22 .3030e-07 .2000e-09 .37662e-03 4
23 .3110o-07 .8000e-09 .941S5--04 4
24 .3310e-07 .2000e-08 .37662e-04 4
25 .3S10e-07 .2000e-08 .37662e-04 3
26 .4710e-07 .2000e-08 .37662e-04 3
27 .3910e-07 .2000e-08 .37662e-04 3
28 .4110o-07 .2000e-08 .37662e-04 3
29 .4310e-07 .2000e-08 .37662e-04 3
30 .4510o-07 .2000e-08 .37662e-04 3
31 .4710.-07 .2000e-08 .37662e-04 3
32 .4910e-07 .2000e-08 .37662e-04 2
33 .5000e-07 .9000-09 .83694o-04 3

L-' .'v..-'.,'L ,'',','. .''..". ,W_ "
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C]OS inverters with sinal s =1.

(SLAE

time time step # of iterations

0 0 0 13
1 .5000-10 .$000e-10 2
2 .10000-09 .50000-10 2
3 .3000e-09 .2000e-09 3
4 .1100.-08 .8000.-09 3
5 .3100e-08 .2000e-08 3
6 .5100--08 .2000e-08 3
7 .7100.-08 .2000e-08 3

. 8 .9100.-08 .2000e-08 3
9 .1110o-07 .2000e-08 3
10 .1310e-07 .2000e-08 3
11 .1510'-07 .2000e-08 3
12 .1710*-07 .2000e-08 4
13 .1910.-07 .2000e-08 $
14 .2110.-07 .2000e.-08
15 .2310o-07 .2000e-08 3
16 .2510e-07 .2000e-08 7
17 .2710@-07 .2000e-08 3
18 .2910o-07 .2000.-OS 3
19 .3000e-07 .90000-09 3
20 .3050e-07 .5000-10 3
21 .3010e-07 .5000.-10 2
22 .3030e-07 .2000*-09 3
23 .3110e-07 .80000-09 3
24 .3310e-07 .2000e-08 3
25 .3510e-07 .2000e-08 3
26 .4710e-07 .2000e-08 3
27 .3910*-07 .2000e-08 2
28 .4110e-07 .2000e-08 2
29 .4310*-07 .2000e-08 2
30 .4510e-07 .2000e-08 2
31 .4710o-07 .2000e-08 2
32 .4910o-07 .2000e-08 2
33 .3000e-07 .9000-09 2
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Table 3.6 I

m.Invrters with SX-10
*1L

time tim stop coupling I of iterations

0 0 0 .100000-01 68
1 .50000-10 .5000e-10 .100000-01 4
2 .1000.-09 .5000.-10 .10000.-01 4
3 .3000e-09 .2000e-09 .10000.-01 4
4 .1100.-08 .8000.-09 .100000-01 $

5 .3100e-08 .2000e-08 .10000.-01 8
6 .5100.-08 .2000e-08 .100000-01 5
7 .7100.-08 .2000e-08 .10000.-01 6
8 .9100.-08 .2000e-08 .10000.-Ol 7
9 .1110o-07 .2000e-08 .10000.-01 8
10 .1310e-07 .2000e-08 .10000.-01 9
11 .1510o-07 .2000e-08 .10000.-01 11
12 .1710*-07 .2000e-08 .10000.-01 10
13 .1910*-07 .2000e-08 .10000-01 8
14 .2110*-07 .2000.-08 .10000.-01 8
15 .2310e-07 .2000e-08 .10000.-01 a
16 .2510@-07 .2000e-08 .10000.-01 9
17 .2710&-07 .2000e-08 .10000.-01 7
18 .2910e-07 .2000.-08 .10000.-01 9
19 .3000e-07 .9000.-09 .10000.-01 7

The coupling is the conductance of the mitter resistance re-100.

Ii
"t
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Table ~i

mT iuverters _wIQh XzrlO

tine time step # of iterations

0 0 0
1 .O00e-10 .O00e-10 4
2 .10000-09 .50000-10 3
3 .3000e-09 .2000e-09 4
4 .11000-08 .80000-09 5
5 .3100e-08 .2000e-0 8
6 .51000-08 .2000e-08 $
7 .7100e-08 .2000.--O8 7
8 .9100--08 .2000.-OS $
9 .1110oe-07 .2000.-08 13
10 .1310e-07 .2000e-08 6

": 11 .110oe-07 .2000e-08 11
12 .1710e-07 .2000.-08 12
13 .1910o-07 .2000.--OS 6
14 .2110e-07 .2000.-08 6
15 .2310s-07 .2000e-08 7
16 .2510e-07 .2000e-08 9
17 .2710o-07 .2000e-08 7
18 .2910e-07 .2000.--08 8
19 .3000e-07 .90000-09 5

r.%
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Table 3..6

TTL inverters with 12a-1&

time time step coupling # of iterations

0 0 0 .10000o-01 40

1 .0000e-10 .$000e-10 .lO000e-00 $
2 .1000e-09 .$000e-10 .lO000e-O0 $
3 .3000e-09 .2000e-09 .l000e-0-0 .
4 .1100e-08 .8000e-09 .lO000e-00 7
5 .3100e-08 .2000e-08 .l000e-0-0 7
6 .$100e-08 .2000e-08 .l000e-0-0 7
7 .7100e-08 .2000e-08 .l000e-0-0 7
8 .7350e-08 .2500e-09 .lO000e-00 7 (0)
9 .83S0e-07 .1000e-08 .10000e-00 29
10 .1035e-07 .2000e-08 .lO000e-00 18
11 .1235e-07 .2000e-08 .l000-00 13
12 .1435e-07 .2000e-08 .lO000e-00 14
13 .1635e-07 .2000e-08 .lO000e-00 9
14 .1835e-07 .2000e-08 .lO000e-00 9
15 .2035e-07 .2000e-08 .lO000e-00 7
16 .2235e-07 .2000e-08 .lO000e-00 7
17 .2435e-07 .2000e-08 .l000e-0-0 9
18 .2635e-07 .2000e-08 .l000-00 7
19 .2835e-07 .2000e-08 .lO000e-00 9
20 .3000e-07 .1650e-09 .lO000e-00 9

(M): The original time stop can not converge within 50 iterations,

with the reduced time step being used.

The coupling is the conductance of the emitter resistance re-lO.

5.



107

m invertrs u.W 12-1zr&

time time step # of iterations

0 0 0 35
1 .$000e-10 .5000e-10 4
2 .1000.-09 .5000e-10 4
3 .3000e-09 .2000e-09 4
4 .1100e-08 .o000o-09 7
5 .3100.-08 .2000e-08 7
6 .5100.-08 .2000.-08 5
7 .7100e-08 .2000e-08 7
8 .9100.-o8 .2000e-os 12
9 .1110e-07 .2000e-08 7

10 .1310e-07 .2000e-08 13
11 .1510o-07 .2000e-08 11
12 .1710e-07 .2000e-08 10
13 .1910-07 .2000e-08 15
14 .2110o-07 .2000e-08 6
15 .2310e-07 .2000e-08 8
16 .2510e-07 .2000e-08 6
17 .2710*-07 .2000e-08 6
18 .2910e-07 .2000.-08 6
19 .3000e-07 .90000-09 6

H a



108

- ~ Inverters with ze-Z
.

time time step coupling # of iterations

0 0 0 .10000e-01 65
1 .5000e-10 .50000-10 .10000e+01 5
2 .1000e-09 .5000e-10 .10000e+01 6
3 .3000e-09 .2000e-09 .10000e+01 6
4 .11000-08 .8000e-09 .10000e+01 7
5 .3100e-08 .2000.-O8 .10000.+01 7
6 .5100.-08 .2000e-O8 .10000e+01 7
7 .7100e-08 .2000e-O8 .10000e+01 8
8 .7350-08 .2500.-09 .10000e+01 12 (M)
9 .8350.-07 .1000'-08 .10000e+01 36
10 .1035e-07 .2000e-OS .10000e+01 19
11 .1235e-07 .2000e-O8 .10000e+01 9
12 .1435o-07 .2000e-O8 .10000O+01 7
13 .1635e-07 .2000e-O8 .10000e+01 12j
14 .1835e-07 .2000e-O8 .100000+01 13
15 .2035e.-07 .2000e-0 .10000e+01 10
16 .2235e-07 .2000.-O8 .10000.+01 11
17 .2435o-07 .2000e-O8 .lOOOOe+01 11
18 .2635e-07 .2000e-O8 .10000e+01 14
19 .2835*-07 .2000e-08 .100000+01 11
20 .3000e-07 .1650-09 .10000e+01 12

(s): The original time step can not converge within 50 iterations,

with the reduced time step being used.

The coupling is the conductance of the emitter resistance re-i.

9"
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Table 1.6f

TTL inverters with ZVI~

tine time step # of iterations

0 0 0 40 " -

1 .5000-10 .5000'-10 4
2 .lO00e-09 .5000e-lO 4
3 .3000e-09 .2000e'-09 4
4 .1100.-08 .8000--09 7
5 .3100.-OS .2000e-08 7
6 .5100.-08 .2000e-08 $
7 .7100.-OS .2000e-08 7
8 .91000-08 .2000.-08 12
9 .1110e-07 .2000e-08 10
10 .1310e-07 .2000e-08 12
11 .1510e-07 .2000e-08 6
12 .1710e-07 .2000e-08 10
13 .1910e-07 .2000e-08 15
14 .2110e-07 .2000e-08 9
15 .2310e-07 .2000e-08 10 r
16 .2510o-07 .2000e-08 8
17 .2710e-07 .2000e-08 6

18 .2910o-07 .2000e-08 8
19 .3000e-07 .90000-09 5

Z



*q b

110

Table .11-

J~inverters wth~ ku

d time time step coupling of iterations

0 0 0 .10000e-01 38
1 .7812e-12 .7812e-12 .10000e-01 4 (Ce)

2 .1562e-11 .7812e-12 .10000e-41
3 .1953.-ll .3906e-12 .10000e-01 3 (0)
4 .3615e-l1 .1562e-li .10000--01 3

5 .4297e-l1 .7812e-12 .10000e-01 3 (C)

6 .4687.-li .3906.-12 .loooo-o1 3
7 .6250e-11 .1562e-11 .10000.-01 3
8 .7031e-11 .7812e-12 .10000--01 3 (C)

9 .7422e-l .3906.-12 .10000e-01 3 (C)

10 .8984e-ll .1562e-li .10000e-01 3
11 .9766e-ll .7812e-12 .10000e-01 3 (C)

12 .1016e-10 .3906e-12 .lO000e-01 3 (C)
13 .1172e-10 .1562e-1l .10000e-01 3

14 .1250e-10 .7812o-12 .10000e-01 3 (C)

15 .1289e-10 .3906.-12 .lO000e-01 3 (C)

16 .1309e-10 .1953e-12 .10000e-01 3 (C)
17 .1387o-10 .7812&-12 .10000e-01 3 -

18 .1426e-10 .3906.-12 .1000e-01 3

(CC):

The original time step can not converge within 100 iterations,

with the reduced time step being used.

(0): The original time step can not converge within S0 iterations,

with the reduced time step being used.

The coupling is the conductance of the base resistance rb=100.

'U

t::p
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Table 5.7b

ECL inverters with b100

• (SLA h)

time time step # of iterations

0 0 0 12
1 .5000e-10 .5000.-10 3
2 .1000e-09 .5000--10 3
3 .3000e-09 .2000--09 4
4 .,,ooe-09 .,ooo-09 4
5 .2000e-08 .90000-09 4
6 .2050e-08 .5000--10 4

k7 .2100e-08 .5000e-10 3
8 .2300e-08 .2000@-09 3
9 .3100e-08 .8000e-09 5

10 .5100e-08 .2000e-08 5
11 .7100e-08 .2000e-08 4
12 .9100.-08 .2000e-08 4
13 .1110e-07 .2000.-O 3
14 .1310e-07 .2000e-08 3
15 .1510e-07 .2000e.-08 3
16 .1710e-07 .2000.-08 3
17 .1910e-07 .2000e-08 3
18 .2110*-07 .2000&-08 3
19 .2310e-07 .2000.-08 3

20 .2510e-07 .2000e-08 3
21 .2710e-07 .2000e-08 3
22 .2910e-07 .2000e-08 3
23 .3000e-07 .9000--09 3

b
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56Concluding Remarks

It is shown in Table 5.4 and Table 5.5 that the simulation

results of the NNOS circuits and OIOS circuits are good and the time

steps used in SLATE-R are identical with those in the SLATE program,

because of the low coupling terms with the NODS technologies. COS

circuits take slightly more iterations than NNDS circuits due to con-

vergence, because of the higher signal gain and stronger coupling

capacitance with the CHDS technology. From Table 5.6 and Table 5.7,

it is found that for the bipolar transistor circuits, the number of

iterations required for convergence is excessive because of the

increased coupling and gain of the input circuits. By changing the

emitter resistance in Table 5.6 to adjust the coupling, it clearly

shows the effect of the coupling on the convergence speed. A limita-

tion on the number of iterations per time point was set in the

SLATE-R program. If the current time step can not reach convergence

in a certain number of iterations, a new time step is chosen. Coin-

pared with the TIM. circuits, the ECL circuits exhibit shorter gate

propagation delay which causes the simulation of the B0L circuit to

take more iterations and eventually result in very small time steps.

-e.... - . -. . . .
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CHAPTER 6

THE SLATE-R PROGRAM

With the advantages mentioned in the previous chapters, the

SLATE Program has been chosen to be the pedestal to implement the

time-point relaxation techniques. The SLATE Program exploits the

node tearing method which basically is just a generalized Norton

equivalent circuit approach. Each subcircuit can be extracted as an

equivalent circuit via the LU factorization. By clustering all the

equivalent subcircuits to construct a simplified equivalent circuit,

which is the interconnection matrix in Eq. (5.2), one can solve the

interconnection matrix to obtain the node voltages of all the tearing

nodes for each subcircuit. The next step is to go back to each sub-

circuit with the tearing ncde voltages as the stimuli to get the node

voltage of the internal nodes. From the viewpoint of the matrix

f.: equations, the SLATE program is still inverting the whole matrix; all

the subcircuits can be solved simultaneously. With this solution

strategy, one need not worry about the order in which the subcircuits

are to be processed, and the fan-in and fan-out nodes do not have to

be identified.

However, the solution strategy of the relaxation techniques is

to process each subcircuit individually by treating the fan-in nodes

as the sources and the fan-out nodes as inputs to the next stage of

subcircuits. Hence, one should identify the fan-in nodes and fan-out
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nodes of each subeircuit and also determine the order in which the 0

subcircuits are to be processed.

In this chapter, we will describe the implenentation of the pro-

gram SLATE-R (a Simulator with Latency and Tearing - Relaxed ver-

sion). Different iterative schemes of the relaxation approaches are

also described.

6.1 The Input Processing - READIN Overlay

For the exploitation of the relaxation techniques, the fan-in

nodes and the fan-out nodes of each subcircuit have to be identified.

However, the circuit input format of the SLATE (SPICE2) program only

gives the external nodes of each subcircuit without specifying the

fan-in nodes and fan-out nodes. The first step of the program imple-

mentation is to change the SUBCIT card in the input file. The general

form of the subcircuit definition in the SLATE program is as follows:

General form

.SUBC[T SUBNAM Ni <N2 N3 ... NE>

Examples:

•SUBCIT NAND2 10 20 30 40

In the subeircuit definition, SUBDNA is the subcircuit name, and

Ni, N2, ... NE are the external nodes. For example, the NAND2 cir-

cuit has four external nodes, node #10 is the DC power supply, node

NIs



• 115

#20 and node #30 are the input nodes while node #40 is the output

node. In order to identify the fan-in nodes and the fan-out nodes.

the SUBCIT card is modified to the form:

General form

.SUBCKT SUBNAM N1 (N2 N3 ... NE> NFIN

T, Examples:

UJBCKT NAND2 10 20 3040 3

where NFIN is the nuber of the fant-in nodes of the suboircuit. The

DC power supplies are treated as the fan-in nodes in order to obtain

the optimal reordering [101 performance. In this case, the NAND2

circuit has three fan-in nodes and one fan-out node, so NFIN - 3.

6.2 Analysis Sequencina - ERR Overlay

In the ERRCK overlay, the SLATE program constructs the node

connection lists. This primitive and the event-driven algorithm in

Section 5.3 are used to set up the order in which the subcircuits are

to be processed.

Matri Set And Matri Locatio Overla

With the exploitation of the node tearing approach, the SLATE

program reorders all the tearing nodes to the border as shown in Eq.

(5.1). The interconnection matrix shown in Eq. (5.2) is the core in
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the solution strategies of the node tearing techniques. Because the

relaxation techniques need not formulate the interconnection matrix,

each suboircuit can be treated as one "Independent' circuit with its

fan-ins as the stimuli input voltage sources. Hence, the matrix set

up is straightforward. The repetitiveness property of subeircuits is

still used in the S.AT-R program, i.e., only one suboircuit descrip-

tion for each type of repetitive subcircuit need be stored and only

one set of the submatrix sparse matrix pointers for each type of

repetitive subcircuit is needed. In this overlay, a set of fan-in

and fan-out lists are established to trace the input stimuli and the

coupling terms among each subeircuit.

_ A alysis Procedure - Overla SLATE Proaram

~.4Algorithms in .L3IProara

The analysis algorithms used in SLATE program are shown below:

Initialize;

TINS - 0

call SOEJPD to set sources for the entire circuit;

call ITERB;

if (not converged) stop analysis;

( print operating-point solution;

savout: store outputs

i* ?:
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newtim: TIME = TIME + DELTA

if (TINE > TSTOP ) exit;

( adjust DELTA for breakpoint table values;

call SORUPD;

call ITER8;

if (conversed) Soto tsterr;

TIME = TINE - DELTA;

DELTA = DELTA/8;

goto tstdel;

)

tsterr: call TUNC;

if (error acceptable) Soto savout;

[ TINE = TINE- DELTA;

DELTA - DELNEW (computed in TRUNC);

tstdel: if (DELTA < DELMIN ) stop analysis;

goto newtim;

The actual Newton-Raphson iteration is controlled by subroutine -A

ITEn. A flow chart for that subroutine follows.

6.4.2 Iteration Scheme S A Proaram

ITERNO = NONCON = 0 ;

...
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DONE - .false.;

while (not done)

yload: ( call YLOAD;

if ((NOSOLV is nonzero) and

(analysis - initial transient)) exit;

load the circuit (except subcircuits);

locx-locate(19); (load the first subcircuit)

subckl: if (locx - 0) Soto sdodca ;

latency check;

(in time level or Newton-Raphson iteration level)

if (nodplc(locx+9) is nonzero) Soto nxtckl;

load elements in subcircuit;

nxtckl: locx - nodplc(locx); (search for the next subeircuit)

Soto subckl;

sdcdcm: locx locate(19);

subcks: if (loax - 0) exit;

if (nodplc(locx+9) - 1) (latency in time level) Soto nxtcks;

call SDCDCO; (LU decomposition for suboircuit)

nxtcks: locx- nodplc(locx); Soto subcks;

ITERNO = ITERNO + 1

if (ITERNO > iteration limit) exit;

if (NONCON - 0 ) DONE - .true.;

call DCDCMP;

(LU decomposition for the interconnection matrix)

I
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call DCSOL; (solve the interconnection matrix)

if (all the tearing nodes converged) ONKOOK -0;

lox=- locate(19)

solckt: if (locx - 0) Soto yload;

check latency flaS;

if ((nodplc(locx+9) is nonzero ) and

(keep latency)) Soto sdcsol;

[ call SDCSCL;

(solve the suboircuit with backward substitution)

check convergence;

if (not converged) NGO4ON NONON + 1

sdcsol: loex = nodple(locx); Soto solckt

From the algorithms used in the SLATE program, it is found that

with the implementation of the node tearing technique the SLATE pro-

gram can take advantage of the latency exploitation. However, the

node tearing approach used here is one special reordering technique
L .

which puts all the tearing nodes to the border of the system matrix.

By solving the resulting interconnection matrix [8], one gets the

external node voltages for each subcircuit, while the internal node

voltages are solved by backward substitutions. From the viewpoint of

solving the matrix equations of the system, full matrix inversion is

L~t--...Aa
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still needed in the SLATE program. In the next section, we describe

how the relaxation techniques are implemented in the DCMRAN overlay

and the core overlay of the SLATE program.

6.5 Modifications of the Analysis Procedure
DCTRANq Overla in _L.TB-R ?o- a

Because each time only one subeircuit is analyzed with the use

of the relaxation techniques, we just need to process the individual

matrix equations for the corresponding subcircuit. This is a depar-

ture from the analysis procedure with the SLATE program. The

analysis algorithms used in the SLATE-R program are shown below:

6.5.1 llaorithms in ILATE-R Program

initialize;

TINE - 0

call ITERS;

if (not conversed) stop analysis;

( print operating-point solution;

savout: store outputs

newtim: TIME - TD4E + DELTA

if (TIN E> TSTOP ) exit;

( adjust DELTA for breakpoint table values;

call ITERS;
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if (converged) Soto tsterr; Z-

T - TIE - DELTA;

DELTA - DELTA/8; -

Soto tstdel;

tsterr: call TUNC;

if (error acceptable) Soto savout;

( TINE - TINM - DELTA;

DELTA - DELNEW (computed in 7RUNC);

tstdel: if (DELTA ( DELMIN ) stop analysis;

Two different iteration schemes are implemented. In order to

describe the iteration schemes, let us recall Eq. (3.6).

n+l, n+l, n+l1 12 )
, ( i 2 . - 1 xk' k+l' ..' R . (6.1)

n+1 n+1At time tn+, the k-th component of x # is obtained by solving

the above scalar equation. In our implementation, one iteration

scheme is that each time we only iterate one subcircuit once and go

to the next subcircuit and continue this process until all the sub-

circuits are conversed. The other scheme is to iterate each subcir-

cuit until convergence is reached and then go to the next subcir-

cuit. After all the subcircuits are processed, then go back to the

t1eh
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first subcircuit to check if the iteration has converged. This pro-

oess proceeds util all the subeircuits are checked. The flow chart

for the implementation of the first iteration scheme follows. -

j.!.2 Iteration Scheme _I 1in Proram-

ITERNO - 0;

DONE - .false.;

while (not done)

icheck = 0 (convergence flag);

iterat: locx = locate(19)

suboki: if (loox - 0) soto ncheck;

f call SORUPD;

(to set sources for this subircuit)

call YLOAD;

(to load elements for this suboircuit)

if ((NOSOLV is nonzero) and

(analysis = initial transient)) exit;

latency check;

(in time level or Newton-Raphson iteration level)

if (nodplc(locx+9) is nonzero) exit;

f load elements in subcircuit;

call SDCDCX;

MU decomposition for this subcircuit)
'e

m  "

v, ',, e : ' ',.,; i, - , ,, : " "' " ; " '"'" ' ' ' ' "" "'""':'" -" '""' " ' " '" .'.
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if (nodplc(locx+9) is nonzero) Soto nxtckl; '

( call SDCSCL;

(solve the suboircuit with backward substitution)

NGKONN - 0;

check convergence; (for this subcircuit only)

if (all the nodes of this subcircuit conversed) NONCON = 0;

NONOON = NONOIN + 1

if (NON4ON = 0) Soto nxtckl;

( icheck = icheck + 1

nxtckl: locz = nodplc(locx);

(search for the next subcircuit) .t

Soto subckl;

ncheck: check convergence; (for the entire circuit)

if (icheck 0 0) DONE - .true.;

( ITERNO - ITERNO + 1

if (ITERNO > iteration limit) exit;

icheck = 0;

Soto iterat

aA.

I7 % .

%-.
-

.--
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The following is the flow chart for the implementation of the second

iteration scheme:

..3Iteration Scheme II in JITB Proara

- rERNO -=0

DONE - .false.;

while (not done)

icheck - 0 (global convergence flag);

ichckt - 0 (local convergence flag);

iterat: locx - locate(19)

subckl: if (loax - 0) goto ncheck;

ichckt - 0

( call SORUPD;

(to set sources for this subcircuit)

yload: ( call YLOAD; (to load elements for this subcircuit)

if (ichckt is nonzero) goto yload2;

if ((NOSQ..V is nonzero) and

(analysis =initial transient)) exit;

latency check;

(in time level or Newton!-Raphson iteration level)

if (nodplc(locx+9) is nonzero) exit;

yload2: load elements in subcircuit;

( call SDCDO( (LU decomposition for this subcircuit);
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if (nodplc(locx+9) is nonzero) Soto nxtckl;

f call SDCSQ..;

(solve the subcirouit with backward substitution)

NNCON - 0;

check convergence; (for this subcircuit only)I

if (all the nodes of this subcircuit converged) NONCON =0;

NONCON =NONCON + 1

if (NO!400N =0) goto nxtckl;

( ichckt - ichckt + 1

icheck =iciieck + 1

goto yload;

nxtckl: loex nodplc(looz); (search for the next subcircuit)

nhc:check convergence; (for the entire circuit)

if (icheck = 0) DONE = .true.;

( ITERNO - ITERNO + 1

if (ITERNO > iteration limit) exit;

Soto iterat

The experimental results for different iteration schemes are

given in the next section. *:

P -P r 2
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6.6 Experimental Results __

Table 6.1 shows the results for the 11-stage chain of inverter

circuits in Fig. 5.2.

Table 6.1

Simulation data for the 11-staae chain of inverter circuits

DC Analysis

CPU (see)

Scheme I Scheme II SLATE

5.63 3.20 3.30

C .

Transient Analysis

CPU (sec)

Scheme I Scheme II SLATE

39.72 52.92 16.82

-A*

| I .....- .. > .. . .- - - -
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Table 6.2 shows the results for the binary-to-octal decoder cir-
cuit in Fig. 5.3.

Table 6.2

Simulation data for the binar--.to-octal decoder circuit

DC Analysis

CPU (sec)

Scheme I Scheme II SLATE

11.87 7.85 6.27

Transient Analysis

CPU (sec)

Scheme I Scheme II SLATE

49.88 61.65 14.10

-7A
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Table 6.3 shovs the results for the one-bit full adder circuit in

Fig. 5.4.

TablIe6.

Simulation data for the one-bit full adder circuit

DC Analysis

CPU (sec)

Scheme I Scheme II SLATE

6.18 5.25 4.67

Transient Analysis

CPU (sec)

Scheme I Scheme II SLATE

31.95 48.56 17.47

r -

c,.
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Table 6.4 shows the results for the bipolar transistor cascade of
inverters in Fig. 5.7.

Tble I.4

Simulation data for the bigola transistor inverters

DC Analysis

CPU (sec)

Scheme I Scheme II SLATE

2.62 3.52 2.12

Transient Analysis

CPU (see)

V Scheme I Scheme II SLATE

14.45 33.07 8.42

6. Concludin Remarks

6.1.1 Remark _

From Table 6.1, Table 6.2 and Table 6.3, it is found that for

the N)S digital circuits, Scheme II works faster than Scheme I does

in the DC analysis, while in the transient analysis, Scheme II is

slower than Scheme I. For example, for the 11-stage inverter chains,

in the DC analysis Scheme II takes 3.20 seconds and Scheme I takes

7.23 seconds, whereas in the transient analysis Scheme II takes 52.92

MM
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seconds and Scheme I takes 39.72 seconds. On the other hand, from

Table 6.4, for the bipolar digital circuit, in the DC analysis,

Scheme II takes 3.52 seconds and Scheme I takes 2.62 seconds, while

in the transient analysis, Scheme II takes 33.07 seconds and Scheme I

takes 14.45 seconds. In other words, Scheme I is always slower than

Scheme I in the simulation of the bipolar digital circuits.

Because there are no coupling capacitors for the NOS digital

circuits in the DC analysis, in Scheme II one subcircuit is processed

to convergence and then fed to the next subcircuit which obtains the

exact stimuli to process the analysis, hence, there is no waste in

the iterative process. For Scheme I the waveforms fed from the fan-

in subcircuit into the next stage are not accurate until the fan-in

subcircuit achieves convergence; before that, all the iterative

processes do not make any sense.

However, in the transient analysis, from Table 5.5 it is found

that the typical number of iterations needed to achieve convergence

for NOS digital circuits is three or four at each time point. Let us

define one unit as one iteration for one subcircuit. If we take a

four cascade chain of uniform subcircuits as an example, then Scheme

I takes four iteration sweeps to reach convergence with each sweep

analyzing four subcircuits; then the total units needed for Scheme I

-: 
"  are 16. If Scheme II is used, it takes four iterations for each sub- S

circuit to reach local convergence, that means in the first run the

total units are 16 and it takes at least two runs to ensure global

convergence, that is, 32 units.
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The strong coupling terms in the bipolar technology make the

relaxation technique take more iterations to achieve convergence as

shown in Table 5.6. The typical number of iterations needed to

achieve convergence for bipolar transistor circuits is six to eight

at each time point. Similarly, let us take the four cascade chain of

uniform subcircuits as an example. For Scheme I it takes six sweeps

to reach convergence, that is, 24 units. While Scheme II takes six

iterations to achieve local convergence, each run needs 24 itera-

tions. Scheme II needs at least two runs to ensure global conver-

gence, that is, 48 units.

Our conclusion is that, if there is no coupling, then Scheme I1

which is used in MDTIS-C and PREMOS works very well just like NDTIS-C

and PREMOS. When there is coupling, then Scheme I works faster than

Scheme II does.

6.1.2 Remark II

In order to see the performance of the S.ATE-R program in the K
simulation of strongly connected circuits, Table 6.5 and Table 6.6

show the results for the 3-stage ring oscillator in Fig. 4.1 and the

SR Flip Flop in Fig. 6.1. Only Scheme I is used.cz1
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3 Table 6.5 shows the results for the 3-stage ring oscillator in
Fig. 4.1.

Tabl 1 _4

Simulation data for the 3-stae rin oscillator

DC Analysis

CPU (see)

Scheme I SLATE

2.13 0.92

Transient Analysis

CPU (sec) V
Scheme I SLATE

18.82 9.48 ,

Lp .)
K.2'Z

N , - .
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Table 6.6 shows the results for the S1 Flip Flop in Fig. 6.1.

Simlati aki JL .iAl W J"

DC Analysis

CPU (see)

Scheme I SLA2X

3.13 2.05

Transient Analysis

CPU (see) &

Scheme I SLATE

78.03 22.65

It is found in Section 6.6 that the simulation speed of the

SLATE-R program is two to three tines slower than that of the SLATE

program. In order to find which factors affect the simulation speed,

the schemes of the latency exploitation in both SLATE-R and SLATE are

removed to simulate some circuits again.

1, % k
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Table 6.7 shows the results for the SR Flip Flop In Fig. 6.1
without the latency exploitation.

Tabl I .

J ~ simulatio, data Lor he LR Zj" Flop oircuit

(without the latenoy exploitation)

DC Analysis

CPU (sec) # of iterations

SLATE-R 3.50 25

SLATE 2.58 25

Transient Analysis

CPU (see) # of iterations

SLATE-R 82.43 469

SLATE 26.58 171

-.. .. .' ... ..
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Table 6.8 shows the results for the one-bit full adder circuit in
Fig. 5.4 without the latency exploitation.

Simulation data for the one-bil full adde circuit
(without Ike & ateu exuloitation)

DC Analysis

CPU (see) # of iterations

SLATE-R 7.25 15

SLTE 5.03 15

Transient Analysis

CPU (see) # of iterations

SLATE-R 41.45 84

SLATE 17.97 46

It is found that, for DC analysis, SLAT-R and SLATE take the

same umber of iterations. In Table 6.7, the CPU time for SLATE-R is

7.25 seconds and is 144.14% of the 5.03 seconds CPU time for SLATE.

Thus, we can estimate the overhead for the relaxation method to

predict the coupling is 44.141. Similarly, in Table 6.8, the over-

head to predict the coupling is 35.65%.

In transient analysis, Table 6.7 shows the SLAT-R takes 84

iterations in 41.45 seconds of CPU tine, while SLATE takes only 46

iterations in 17.97 seconds. The CPU time spent in SLATE-R is 230.66%
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of that spent in SLATE; the iteration number needed in SLATE-R is

182.61% of that needed in SLATE. The overhead to predict the cou-

pling is 48.051. In Table 6.8. the CU time spent in SLATE-K is

310.12%6 of that spent in SLATE, and the iteration number needed in

SLATE-R is 274.26% of that needed in SLATE. The overhead to predict

the coupling is 35.86%.

From Table 6.7 and Table 6.8, we can determine the dominant fac-

tor which makes the difference in simulation speed. As we can see,

more iterations are required for the relaxation method, and the over-

head for the predictor is also a considerable factor.

MOM.

I.
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CHAPTER 7

CONCLUSIONS

We used a simple linear circuit model to represent one gate

driving another gate, and we investigated the numerical stability and

convergence properties of the time-point (Gauss-Seidel) and waveform

relaxation methods as a function of the amount of parasitic coupling

capacitance between the gates and the gain of the driven gate in the

active region.

In Chapter 3 our investigation shows that the modified Gauss-

Seidel time-point relaxation method does not behave well for linear _

stiff systems if the stiffness is caused by the coupling. The method

becomes numerically unstable when the size of the time step exceeds

the smallest time constant in the system by a factor of three or

more.

In Chapter 4 we apply the modified waveform relaxation method

for the analysis of linear stiff systems. It is foi'nd that the itera-

tions oscillate about the solution and an excessive number of itera-

tions are required for convergence unless the time windows are

approximately the size of the smallest time constant of the system.

These results clearly indicate that if the system stiffness (strong

Miller effect) is caused by the coupling, then the integration step

size cannot exceed approximately the smallest time constant in the

circuit in order to have good convergence properties.

r~
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However. practical implementation shows that both the waveform

relaxation method and the modified Gauss-Seidel method are not

affected very much by the pole-splitting phenomenon in the simulation

of NOS digital circuits. This seems to be due to the low gain and

weak coupling in these circuits. Also, digital NOS circuits are

switched on and off fairly rapidly so that they are in the linear

active region only a small percentage of the time interval.

In SLATE the time steps for transient analysis are controlled by

the local truncation error only. However, because of the poorer sta-

bility convergence properties of the relaxation methods for some

problems, the time step is controlled first by the local truncation

errf, but if the iteration limit is exceeded, the time step is

reduced until good convergence is achieved. Thus, the SLATE-R pro-

gram may not only require more iterations per time point, but also

more time points may be required to obtain the solution in a given

time interval.

It is shown in Table 3.4a and Table 5.4b, Table 5.5a and Table

5.5b that the time steps used in SLATE-R to analyze the NOS digi-

tal circuit examples in this thesis are identical with those in the

original LATE program. This means the time step is still controlled

by the local truncation error in SLATE-R for these examples. However,

for bipolar technology, our results show that it takes a tremendous

number of iterations to achieve convergence. In some cases, the

number of iterations exceed the iteration limit which forces the timeL

step to be reduced and eventually causes the error message of "inter-
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nal time step too small" to stop the execution. This means that when

the coupling between subcircuits is too strong, the time steps are

controlled by the iteration count instead of the local truncation

error. Also, occasionally the wide oscillation between successive

iterations causes the arithmetic operations to overflow before the

iteration limit is reached, because of the strong coupling (terminal

resistances) in the bipolar circuits. In Chapter 5, we used different

terminal resistances for the bipolar TL circuits and verified that

the strong coupling causes the convergence problem.

Event driven techniques and latency exploitation are implemented

in SLATE-R. Chapter 5 illustrates the effects of latency exploita-

tion on savings of CPU time. The program structure is shown in

Chapter 6. Two iteration schemes are discussed. It is found that the

performance of different iteration schemes are coupling-oriented. For

the cases of no coupling and strong coupling, Scheme II works better

than Scheme I, while for weak coupling, such as the floating capaci-

tor in IIS circuits, Scheme I is preferred. For very strong coupling,

both Scheme I and Scheme II have poor numerical properties.

With the relaxation technique, there is no need to formulate the

interconnection matrix like in the SLATE program. In the SLATE-R pro-

gram, each subcircuit can be processed individually, which is very

suitable for a multiprocessor computer system. Currently, we use the

same time steps for all the subcircuits. Some advantage can be

obtained if each subcircuit uses its own time step. However, the

overhead for data management in a single processor system might

7*"
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offset the algorithmatic advantage. The latency exploitation is used

as a compensation for choosing the same time step for all the subcir-

cuits. The major advantage of each subcircuit using its own time

steps is to save CPU time with the penalty of data management; in

this case, the latency exploitation scheme skips those latent subcir-

cuits to save CPU time.

In this research, event-driven algorithms are implemented which

sequence the subcircuits to be simulated on the basis of fan-in fan-

out topology. Because the linked list data structure is being used

in SLATE, the coupling terms are easily traced from the matrix

pointer. With the exploitation of the modified Gauss-Seidel method,

the coupling terms on each subcircuit are decoupled by using a pre-

dictor, such that the subcircuits can be solved one at a time.

2.

It is found that SLATE-R is about a factor of two slower than

SLATE. There are three factors that slow down the simulation speed:

the first is the overhead of using predictor to decouple the coupling

terms; the second is the larger number of iterations needed to get

the convergence; and the third is that the tearing nodes and the

power supply nodes are split for each subcircuit which induces a

larger size of submatrix. In Section 5.2, the submatrix size for each

subcircuit is 3x3; however, with the split of power supply nodes and

the tearing nodes, the submatrix size is increased to 7x, thus more

CPU time is required for each subcircuit factorization. For future

research, in order to speed up the simulation speed of SLATE-R, one

can change the data structure such that all the voltage sources are
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set in the first diagonal block exactly as Equation (5.4) shows,

rather than splitting the voltage source nodes, and each suboircuit

is solved with the submatrix which contains only the unknown vari-

ables. The other approach is to use individual time steps for each

subcircuit. Currently SLATE-R and SLATE both use the same time steps

for all the subcircuits and they are all solved with the mallest

time step. In SLATE, all the subcircuits are processed through LU

factorization as well as the interconnection matrix. Thus, in using a

multiprocessor system to solve the equations, the LU factorization of

the interconnection matrix could create a bottleneck. However, the

solution strategy of the relaxation technique is to solve one subcir-

cuit at a time with the coupling terms relaxed; therefore, it seems

to have more potential for implementation in a multiprocessor com-

puter system. 
ii-'

With the potential of taking full advantage of both the tearing

technique and the relaxation technique, the implementation of the

relaxation approach to multiprocessor systems will be a promising

topic for future investigation. In order to implement the relaxation

technique in the multiprocessor computer system, an automatic parti-

tion algorithm that separates the system into certain subsystems is

very important. The basic idea will be to choose terminals with a

minimum fan-out as the partitions. More specifically, choose those

possible nodes, such as the gates in )VS circuitsas the set of candi-

dates for partitioning, and try to partition this set into certain

subsets with about the same size so as not to cause any bottleneck in

the parallel process.

'I.-
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